-
1
-
-
33744485818
-
Lorentz beams and symmetry properties in paraxial optics
-
El Gawhary O and Severini S 2006 Lorentz beams and symmetry properties in paraxial optics J. Opt. A. Pure Appl. Opt. 8 409-14
-
(2006)
J. Opt. A. Pure Appl. Opt.
, vol.8
, Issue.5
, pp. 409-414
-
-
El Gawhary O1
Severini S2
-
2
-
-
0016534180
-
The angular beam divergence in double-heterojunction lasers with very thin active regions
-
Dumke W P 1975 The angular beam divergence in double-heterojunction lasers with very thin active regions IEEE J. Quantum Electron. 11 400-2
-
(1975)
IEEE J. Quantum Electron.
, vol.11
, Issue.7
, pp. 400-402
-
-
Dumke W P1
-
3
-
-
84975674632
-
Focusing of diode laser beams: a simple mathematical model
-
Naqwi A and Durst F 1990 Focusing of diode laser beams: a simple mathematical model Appl. Opt. 29 1780-5
-
(1990)
Appl. Opt.
, vol.29
, Issue.12
, pp. 1780-1785
-
-
Naqwi A1
Durst F2
-
5
-
-
44449112351
-
A note on the general solution of the paraxial wave equation: a Lie algebra view
-
Torre A 2008 A note on the general solution of the paraxial wave equation: a Lie algebra view J. Opt. A: Pure Appl. Opt. 10 055006
-
(2008)
J. Opt. A: Pure Appl. Opt.
, vol.10
, Issue.5
, pp. 055006
-
-
Torre A1
-
6
-
-
0001338151
-
The quantum relativistic harmonic oscillator: generalized Hermite polynomials
-
Aldaya V, Bisquert J and Navarro-Salas J 1991 The quantum relativistic harmonic oscillator: generalized Hermite polynomials Phys. Lett. A 156 381-5
-
(1991)
Phys. Lett.
, vol.156
, Issue.7-8
, pp. 381-385
-
-
Aldaya V1
Bisquert J2
Navarro-Salas J3
-
7
-
-
36449001088
-
The relativistic Hermite polynomial is a Gegenbauer polynomial
-
Nagel B 1994 The relativistic Hermite polynomial is a Gegenbauer polynomial J. Math. Phys. 35 1549-54
-
(1994)
J. Math. Phys.
, vol.35
, Issue.4
, pp. 1549-1554
-
-
Nagel B1
-
8
-
-
0039986834
-
The generating function method and properties of the relativistic Hermite polynomials
-
Dattoli G, Lorenzutta S, Maino G and Torre A 1998 The generating function method and properties of the relativistic Hermite polynomials Nuovo Cimento B 113 553-60
-
(1998)
Nuovo Cimento
, vol.113
, pp. 553-560
-
-
Dattoli G1
Lorenzutta S2
Maino G3
Torre A4
-
9
-
-
21344451314
-
Relativistic orthogonal polynomials are Jacobi polynomials
-
Ismail M E H 1996 Relativistic orthogonal polynomials are Jacobi polynomials J. Phys. A: Math. Gen. 29 3199-202
-
(1996)
J. Phys. A: Math. Gen.
, vol.29
, Issue.12
, pp. 3199-3202
-
-
Ismail M E H1
-
10
-
-
4544279478
-
The Clifford-Gegenbauer polynomials and the associated continuous wavelet transform
-
Brackx F, De Schepper N and Sommen F 2004 The Clifford-Gegenbauer polynomials and the associated continuous wavelet transform Int. Transf. Spec. Funct. 15 387-404
-
(2004)
Int. Transf. Spec. Funct.
, vol.15
, Issue.5
, pp. 387-404
-
-
Brackx F1
De Schepper N2
Sommen F3
-
11
-
-
0242535011
-
The relativistic Laguerre polynomials
-
Natalini P 1996 The relativistic Laguerre polynomials Rend. Matematica VII 16 299-313
-
(1996)
Rend. Matematica
, vol.16
, pp. 299-313
-
-
Natalini P1
-
14
-
-
39749131706
-
Fractionalization of optical beams: I. Planar analysis
-
Gutiérrez-Vega J C 2007 Fractionalization of optical beams: I. Planar analysis Opt. Lett. 32 1521-3
-
(2007)
Opt. Lett.
, vol.32
, Issue.11
, pp. 1521-1523
-
-
Gutiérrez-Vega J C1
-
17
-
-
0142040028
-
A novel method to solve familiar differential equations and its applications
-
Gurappa N, Panigrahi P K, Shreecharan T and Sree Ranjani S 2001 A novel method to solve familiar differential equations and its applications Frontiers of Fundamental Physics vol 4 ed B G Sidharth and M V Altaisky (New York: Kluwer/Plenum) pp269-278
-
(2001)
Frontiers of Fundamental Physics
, vol.4
, pp. 269-278
-
-
Gurappa N1
Panigrahi P K2
Shreecharan T3
Sree Ranjani S4
-
18
-
-
36849106652
-
Canonical transforms. I. Complex linear transforms
-
Wolf K B 1975 Canonical transforms. I. Complex linear transforms J. Math. Phys. 15 1295-301 and refs [14] and [18] therein
-
(1975)
J. Math. Phys.
, vol.15
, Issue.8
, pp. 1295-1301
-
-
Wolf K B1
-
19
-
-
33751165914
-
Lorentz beams as a basis for a new class of rectangularly symmetric optical fields
-
El Gawhary O and Severini S 2007 Lorentz beams as a basis for a new class of rectangularly symmetric optical fields Opt. Commun. 269 274-84
-
(2007)
Opt. Commun.
, vol.269
, Issue.2
, pp. 274-284
-
-
El Gawhary O1
Severini S2
-
20
-
-
33947371229
-
Limits of the paraxial approximation in laser beams
-
Vaveliuk P, Ruiz B and Lencina A 2007 Limits of the paraxial approximation in laser beams Opt. Lett. 32 927-9
-
(2007)
Opt. Lett.
, vol.32
, Issue.8
, pp. 927-929
-
-
Vaveliuk P1
Ruiz B2
Lencina A3
-
21
-
-
46149108115
-
Degree of paraxiality for monochromatic light beams
-
El Gawhary O and Severini S 2008 Degree of paraxiality for monochromatic light beams Opt. Lett. 33 1360-2
-
(2008)
Opt. Lett.
, vol.33
, Issue.12
, pp. 1360-1362
-
-
El Gawhary O1
Severini S2
-
23
-
-
84975538278
-
Generalized Gaussian beam solutions of paraxial optics and their connection to a hidden symmetry
-
Wünsche A 1989 Generalized Gaussian beam solutions of paraxial optics and their connection to a hidden symmetry J. Opt. Soc. Am. A 6 1320-9
-
(1989)
J. Opt. Soc. Am.
, vol.6
, Issue.9
, pp. 1320-1329
-
-
Wünsche A1
-
24
-
-
4043105628
-
Unified operator approach for deriving Hermite-Gaussian and Laguerre-Gaussian laser modes
-
Enderlein J and Pampaloni F 2004 Unified operator approach for deriving Hermite-Gaussian and Laguerre-Gaussian laser modes J. Opt. Soc. Am. 21 1553-8
-
(2004)
J. Opt. Soc. Am.
, vol.21
, Issue.8
, pp. 1553-1558
-
-
Enderlein J1
Pampaloni F2
-
26
-
-
0032140908
-
The beam propagation factor for higher order Gaussian beams
-
Saghafi S and Sheppard C J R 1998 The beam propagation factor for higher order Gaussian beams Opt. Commun. 153 207-10
-
(1998)
Opt. Commun.
, vol.153
, Issue.4-6
, pp. 207-210
-
-
Saghafi S1
Sheppard C J R2
-
28
-
-
0028459502
-
Optical propagator in a graded-index medium with a hyperbolic secant refractive-index profile
-
Lĩares J and Gómez-Reino C 1994 Optical propagator in a graded-index medium with a hyperbolic secant refractive-index profile Appl. Opt. 33 3427-31
-
(1994)
Appl. Opt.
, vol.33
, Issue.16
, pp. 3427-3431
-
-
Lĩares J1
Gómez-Reino C2
-
29
-
-
0033750840
-
Non-paraxial diffraction-free propagation of light in a graded-index planar waveguide with a hyperbolic secant refractive index profile
-
Gómez-Reino C, Perez M V, Bao C, Flore-Arias M T, Vidal S and Fernandez De Avila S 2000 Non-paraxial diffraction-free propagation of light in a graded-index planar waveguide with a hyperbolic secant refractive index profile Japan. J. Appl. Phys. 39 1463-7
-
(2000)
Japan. J. Appl. Phys.
, vol.39
, Issue.PART 1
, pp. 1463-1467
-
-
Gómez-Reino C1
Perez M V2
Bao C3
Flore-Arias M T4
Vidal S5
Fernandez De Avila S6
-
30
-
-
58149278745
-
-
http://www.stanford.edu/~siegman/beam-quality-tutorial-osa.pdf
-
-
-
|