-
1
-
-
33644780820
-
-
1a] M. Tanniru, Q. Yuan, R. D. K. Misra, Polymer 2006, 47, 2133;
-
1a] M. Tanniru, Q. Yuan, R. D. K. Misra, Polymer 2006, 47, 2133;
-
-
-
-
3
-
-
47149095261
-
-
[1c] J. Zhang, E. Manias, C. A. Wilkie, J. Nanosci. Nanotechnol. 2008, 8, 1597;
-
(2008)
J. Nanosci. Nanotechnol
, vol.8
, pp. 1597
-
-
Zhang, J.1
Manias, E.2
Wilkie, C.A.3
-
7
-
-
27844565842
-
-
and 641
-
[2b] J. Zhang, D. D. Jiang, C. A. Wilkie, Polym. Degrad. Stabil. 2006, 91, 298 (and 641);
-
(2006)
Polym. Degrad. Stabil
, vol.91
, pp. 298
-
-
Zhang, J.1
Jiang, D.D.2
Wilkie, C.A.3
-
8
-
-
35148874244
-
-
[2c] M. C. Costache, M. J. Heidecker, E. Manias, G. Camino, A. Frache, G. Beyer, R. K. Gupta, C. A. Wilkie, Polymer 2007, 48, 6532.
-
(2007)
Polymer
, vol.48
, pp. 6532
-
-
Costache, M.C.1
Heidecker, M.J.2
Manias, E.3
Camino, G.4
Frache, A.5
Beyer, G.6
Gupta, R.K.7
Wilkie, C.A.8
-
13
-
-
33645140532
-
-
C. Poisson, V. Hervais, M. F. Lacampe, P. Krawczak, J. Appl. Polym. Sci. 2006, 99, 974.
-
(2006)
J. Appl. Polym. Sci
, vol.99
, pp. 974
-
-
Poisson, C.1
Hervais, V.2
Lacampe, M.F.3
Krawczak, P.4
-
15
-
-
0032488164
-
-
[7b] C. Mueller, G. Capaccio, A. Hiltner, E. Baer, J Appl. Polym. Sci. 1998, 70, 2021.
-
(1998)
J Appl. Polym. Sci
, vol.70
, pp. 2021
-
-
Mueller, C.1
Capaccio, G.2
Hiltner, A.3
Baer, E.4
-
16
-
-
0031341475
-
-
[8a] R. A. Vaia, E. P. Giannelis, Macromolecules 1997, 30, 7990, 8000;
-
(1997)
Macromolecules
, vol.30
, Issue.7990
, pp. 8000
-
-
Vaia, R.A.1
Giannelis, E.P.2
-
17
-
-
0000301688
-
-
[8b] E. P. Giannelis, R. Krishnamoorti, E. Manias, Adv. Polym. Sci. 1999, 138, 107.
-
(1999)
Adv. Polym. Sci
, vol.138
, pp. 107
-
-
Giannelis, E.P.1
Krishnamoorti, R.2
Manias, E.3
-
20
-
-
0034777965
-
-
[9c] E. Manias, A. Touny, L. Wu, K. Strawhecker, B. Lu, T. C. Chung, Chem. Mater. 2001, 13, 3516.
-
(2001)
Chem. Mater
, vol.13
, pp. 3516
-
-
Manias, E.1
Touny, A.2
Wu, L.3
Strawhecker, K.4
Lu, B.5
Chung, T.C.6
-
21
-
-
33751238131
-
-
[10a] F. P. La Mantia, N. T. Dintcheva, G. Filippone, D. Acierno, J. Appl. Polym. Sci. 2006, 102, 4749;
-
(2006)
J. Appl. Polym. Sci
, vol.102
, pp. 4749
-
-
La Mantia, F.P.1
Dintcheva, N.T.2
Filippone, G.3
Acierno, D.4
-
22
-
-
38549111069
-
-
[10b] J. Golebiewski, A. Rozanski, J. Dzwonkowski, A. Galeski, Europ. Polym. J. 2008, 44, 270.
-
(2008)
Europ. Polym. J
, vol.44
, pp. 270
-
-
Golebiewski, J.1
Rozanski, A.2
Dzwonkowski, J.3
Galeski, A.4
-
24
-
-
18644376101
-
-
[11b] F. R. Costa, M. Abdel-Goad, U. Wagenkneght, G. Heinrich, Polymer 2005, 46, 4447;
-
(2005)
Polymer
, vol.46
, pp. 4447
-
-
Costa, F.R.1
Abdel-Goad, M.2
Wagenkneght, U.3
Heinrich, G.4
-
25
-
-
0035853198
-
-
[11c] M. J. Solomon, A. S. Almusallam, K. F. Seefeldt, P. Varadan, Macromolecules 2001, 34, 1864.
-
(2001)
Macromolecules
, vol.34
, pp. 1864
-
-
Solomon, M.J.1
Almusallam, A.S.2
Seefeldt, K.F.3
Varadan, P.4
-
26
-
-
58149286412
-
Standard Method for Seal Strength of Flexible Barrier Materials
-
ASTM F88-00
-
[12a] ASTM F88-00, Standard Method for Seal Strength of Flexible Barrier Materials, Annual Book of ASTM Standards, 2000, Vol. 8;
-
(2000)
Annual Book of ASTM Standards
, vol.8
-
-
-
27
-
-
58149314396
-
-
ExxonMobil standard #490, Crimp Seal Strength, Minimum Sealing Temperature, and Range, Exxon-Mobil Corporation 2001.
-
[12b] ExxonMobil standard #490, Crimp Seal Strength, Minimum Sealing Temperature, and Range, Exxon-Mobil Corporation 2001.
-
-
-
-
28
-
-
33845231644
-
-
D. Aithani, H. Lockhart, R. Auras, K. Transpasert, J. Plast. Film Sheeting 2006, 22, 247.
-
(2006)
J. Plast. Film Sheeting
, vol.22
, pp. 247
-
-
Aithani, D.1
Lockhart, H.2
Auras, R.3
Transpasert, K.4
-
29
-
-
58149280652
-
-
The temperature range studied for PE/EVA/MMT sealant in Figure 1 covers the complete range of seal formation: below 100°C there is no systematic hermetic seal and above 150°C the sealant films deform and fail/flow due to extensive polymer melting.
-
The temperature range studied for PE/EVA/MMT sealant in Figure 1 covers the complete range of seal formation: below 100°C there is no systematic hermetic seal and above 150°C the sealant films deform and fail/flow due to extensive polymer melting.
-
-
-
-
30
-
-
58149316464
-
-
in press
-
J. Zhang, E. Manias, G. Polizos, J.-Y. Huh, A. Ophir, P. Songtipya, M. M. Jimenez-Gasco, J. Adhesion Sci. Technol. 2009, in press.
-
(2009)
J. Adhesion Sci. Technol
-
-
Zhang, J.1
Manias, E.2
Polizos, G.3
Huh, J.-Y.4
Ophir, A.5
Songtipya, P.6
Jimenez-Gasco, M.M.7
-
31
-
-
84889355158
-
-
Wiley, Hoboken, NJ, Ch. 2;
-
[16a] A. Morgan, C. Wilkie, Flame Retardant Polymer Nanocomposites, Wiley, Hoboken, NJ 2007, Ch. 2;
-
(2007)
Flame Retardant Polymer Nanocomposites
-
-
Morgan, A.1
Wilkie, C.2
-
32
-
-
0346361553
-
-
[16b] Z. M. Wang, T. C. Chung, J. W. Gilman, E. Manias, J. Polym. Sci. B: Polym. Phys. 2003, 41, 3173;
-
(2003)
J. Polym. Sci. B: Polym. Phys
, vol.41
, pp. 3173
-
-
Wang, Z.M.1
Chung, T.C.2
Gilman, J.W.3
Manias, E.4
-
34
-
-
33846581949
-
-
W.-J. Boo, L. Sun, G. L. Warren, E. Moghbelli, H. Pham, A. Clearfield, H.-J. Sue, Polymer 2007, 48, 1075.
-
(2007)
Polymer
, vol.48
, pp. 1075
-
-
Boo, W.-J.1
Sun, L.2
Warren, G.L.3
Moghbelli, E.4
Pham, H.5
Clearfield, A.6
Sue, H.-J.7
-
35
-
-
58149292079
-
-
The SEM-EDS has adequate detection sensitivity to identify the traces of high atomic weight silicon and aluminum elements of the MMT inorganic nanoparticles (Si and Al detection limit ca. 0.1-0.25, at 1.740 and 1.487 keV, respectively, However, the EDS sensitivity for the lighter nitrogen of the MMT organic modification is substantially smaller (N detection limit ca. 2-5% at 0.392 keV) mostly due to instrumental reasons: these softer x-rays are strongly absorbed in the sample (self-absorption, on oil/ice contaminations on the detector window, etc. Additionally, N is also much less abundant than either Al or Si in our systems, e.g, for a 6% organo-MMT nanocomposite there exists ca. 2% organic modification (i.e, 0.05% N, about two-orders of magnitude lower than its detection limit) and ca. 4% inorganic MMT i.e, 1.1% Si and ca. 1% Al, about 5-10 times more than their EDS detection limit
-
The SEM-EDS has adequate detection sensitivity to identify the traces of high atomic weight silicon and aluminum elements of the MMT inorganic nanoparticles (Si and Al detection limit ca. 0.1-0.25%, at 1.740 and 1.487 keV, respectively). However, the EDS sensitivity for the lighter nitrogen of the MMT organic modification is substantially smaller (N detection limit ca. 2-5% at 0.392 keV) mostly due to instrumental reasons: these softer x-rays are strongly absorbed in the sample (self-absorption), on oil/ice contaminations on the detector window, etc. Additionally, N is also much less abundant than either Al or Si in our systems, e.g., for a 6% organo-MMT nanocomposite there exists ca. 2% organic modification (i.e., 0.05% N, about two-orders of magnitude lower than its detection limit) and ca. 4% inorganic MMT (i.e., 1.1% Si and ca. 1% Al, about 5-10 times more than their EDS detection limit).
-
-
-
|