메뉴 건너뛰기




Volumn 353, Issue 1, 2009, Pages 410-427

CAT (k)-spaces, weak convergence and fixed points

Author keywords

convergence; CAT (k) spaces; Fixed points; Kadec Klee property; Normal structure; Uniformly lipschitzian mappings

Indexed keywords


EID: 58149218030     PISSN: 0022247X     EISSN: 10960813     Source Type: Journal    
DOI: 10.1016/j.jmaa.2008.12.015     Document Type: Article
Times cited : (162)

References (20)
  • 2
    • 0003365247 scopus 로고    scopus 로고
    • A Course in Metric Geometry
    • Amer. Math. Soc., Providence, RI
    • Burago D., Burago Y., and Ivanov S. A Course in Metric Geometry. Grad. Stud. Math. vol. 33 (2001), Amer. Math. Soc., Providence, RI
    • (2001) Grad. Stud. Math. , vol.33
    • Burago, D.1    Burago, Y.2    Ivanov, S.3
  • 3
    • 27744436289 scopus 로고    scopus 로고
    • Lim's theorems for multivalued mappings in CAT (0) spaces
    • Dhompongsa S., Kaewkhao A., and Panyanak B. Lim's theorems for multivalued mappings in CAT (0) spaces. J. Math. Anal. Appl. 312 2 (2005) 478-487
    • (2005) J. Math. Anal. Appl. , vol.312 , Issue.2 , pp. 478-487
    • Dhompongsa, S.1    Kaewkhao, A.2    Panyanak, B.3
  • 4
    • 33646854043 scopus 로고    scopus 로고
    • Fixed points of uniformly lipschitzian mappings
    • Dhompongsa S., Kirk W.A., and Sims B. Fixed points of uniformly lipschitzian mappings. Nonlinear Anal. 65 (2006) 762-772
    • (2006) Nonlinear Anal. , vol.65 , pp. 762-772
    • Dhompongsa, S.1    Kirk, W.A.2    Sims, B.3
  • 7
    • 0003199612 scopus 로고
    • Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings
    • Marcel Dekker, Inc., New York-Basel
    • Goebel K., and Reich S. Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings. Pure Appl. Math. (1984), Marcel Dekker, Inc., New York-Basel
    • (1984) Pure Appl. Math.
    • Goebel, K.1    Reich, S.2
  • 8
    • 0003268230 scopus 로고
    • Metric Structure for Riemannian and Non-Riemannian Spaces
    • Birkhäuser, Boston
    • Gromov M. Metric Structure for Riemannian and Non-Riemannian Spaces. Progr. Math. vol. 152 (1984), Birkhäuser, Boston
    • (1984) Progr. Math. , vol.152
    • Gromov, M.1
  • 10
    • 14944351621 scopus 로고    scopus 로고
    • Geodesic geometry and fixed point theory
    • Girela D., López G., and Villa R. (Eds), Universidad de Sevilla, Sevilla
    • Kirk W.A. Geodesic geometry and fixed point theory. In: Girela D., López G., and Villa R. (Eds). Proceedings, Universities of Malaga and Seville, September 2002-February 2003 (2003), Universidad de Sevilla, Sevilla 195-225
    • (2003) Proceedings, Universities of Malaga and Seville, September 2002-February 2003 , pp. 195-225
    • Kirk, W.A.1
  • 11
    • 33646836490 scopus 로고    scopus 로고
    • Geodesic geometry and fixed point theory II
    • García-Falset J., Llorens-Fuster E., and Sims B. (Eds), Yokohama Publ.
    • Kirk W.A. Geodesic geometry and fixed point theory II. In: García-Falset J., Llorens-Fuster E., and Sims B. (Eds). Fixed Point Theory and Applications (2004), Yokohama Publ. 113-142
    • (2004) Fixed Point Theory and Applications , pp. 113-142
    • Kirk, W.A.1
  • 12
    • 42949122454 scopus 로고    scopus 로고
    • A concept of convergence in geodesic spaces
    • Kirk W.A., and Panyanak B. A concept of convergence in geodesic spaces. Nonlinear Anal. 68 12 (2008) 3689-3696
    • (2008) Nonlinear Anal. , vol.68 , Issue.12 , pp. 3689-3696
    • Kirk, W.A.1    Panyanak, B.2
  • 13
    • 33751508192 scopus 로고    scopus 로고
    • The approximate fixed point property in product spaces
    • Kohlenbach U., and Leustean L. The approximate fixed point property in product spaces. Nonlinear Anal. 66 4 (2007) 806-818
    • (2007) Nonlinear Anal. , vol.66 , Issue.4 , pp. 806-818
    • Kohlenbach, U.1    Leustean, L.2
  • 14
    • 0040499101 scopus 로고    scopus 로고
    • Jung's theorem for Alexandrov spaces of curvature bounded above
    • Lang U., and Schroeder V. Jung's theorem for Alexandrov spaces of curvature bounded above. Ann. Global Anal. Geom. 15 (1997) 263-275
    • (1997) Ann. Global Anal. Geom. , vol.15 , pp. 263-275
    • Lang, U.1    Schroeder, V.2
  • 15
    • 0002093778 scopus 로고
    • A fixed point theorem for operators in strongly convex spaces
    • (in Russian)
    • Lifšic E.A. A fixed point theorem for operators in strongly convex spaces. Voronež. Gos. Univ. Trudy Mat. Fak. 16 (1975) 23-28 (in Russian)
    • (1975) Voronež. Gos. Univ. Trudy Mat. Fak. , vol.16 , pp. 23-28
    • Lifšic, E.A.1
  • 16
    • 0004375855 scopus 로고
    • Uniform lipschitzian mappings in metric spaces with uniform normal structure
    • Lim T.C., and Xu H.K. Uniform lipschitzian mappings in metric spaces with uniform normal structure. Nonlinear Anal. 25 (1995) 1231-1235
    • (1995) Nonlinear Anal. , vol.25 , pp. 1231-1235
    • Lim, T.C.1    Xu, H.K.2
  • 17
    • 21144475486 scopus 로고
    • Hyperbolic geometry on a hyperboloid
    • Reynolds W.F. Hyperbolic geometry on a hyperboloid. Amer. Math. Monthly 100 5 (1993) 442-455
    • (1993) Amer. Math. Monthly , vol.100 , Issue.5 , pp. 442-455
    • Reynolds, W.F.1
  • 18
    • 34548637273 scopus 로고    scopus 로고
    • Invariant approximations for commuting mappings in CAT (0) and hyperconvex spaces
    • Shahzad N., and Markin J. Invariant approximations for commuting mappings in CAT (0) and hyperconvex spaces. J. Math. Anal. Appl. 337 2 (2008) 1457-1464
    • (2008) J. Math. Anal. Appl. , vol.337 , Issue.2 , pp. 1457-1464
    • Shahzad, N.1    Markin, J.2
  • 19
    • 42949117469 scopus 로고    scopus 로고
    • On analogues of weak convergence in a special metric space
    • translation in
    • Sosov E.N. On analogues of weak convergence in a special metric space. Izv. Vyssh. Uchebn. Zaved. Mat. 5 (2004) 84-89 translation in
    • (2004) Izv. Vyssh. Uchebn. Zaved. Mat. , vol.5 , pp. 84-89
    • Sosov, E.N.1
  • 20
    • 58149272033 scopus 로고    scopus 로고
    • On analogues of weak convergence in a special metric space
    • Sosov E.N. On analogues of weak convergence in a special metric space. Russian Math. (Iz. VUZ) 48 5 (2004) 79-83
    • (2004) Russian Math. (Iz. VUZ) , vol.48 , Issue.5 , pp. 79-83
    • Sosov, E.N.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.