-
1
-
-
58149167256
-
-
Weidenbruch, M. In The Chemistry of Organic Silicon Compounds; Rappoport, Z., Apeloig, Y., Eds.; John Wiley & Sons, 2001; 3, pp 391-428, Chapeter 5.
-
(a) Weidenbruch, M. In The Chemistry of Organic Silicon Compounds; Rappoport, Z., Apeloig, Y., Eds.; John Wiley & Sons, 2001; Vol. 3, pp 391-428, Chapeter 5.
-
-
-
-
2
-
-
58149162210
-
-
Weidenbruch, M. In Organosilicon Chemistry V: From Molecules to Materials; Auner, N., Weis, J., Eds.; Wilev- VCH, 2003; p 114-125.
-
(b) Weidenbruch, M. In Organosilicon Chemistry V: From Molecules to Materials; Auner, N., Weis, J., Eds.; Wilev- VCH, 2003; p 114-125.
-
-
-
-
5
-
-
33846237914
-
-
John Wiley & Sons, Chapter 3
-
(e) Brook, M. A. In Silicon in Organic, Organometallic, and Polymer Chemistry; John Wiley & Sons, 2000; pp 39-96, Chapter 3.
-
(2000)
Silicon in Organic, Organometallic, and Polymer Chemistry
, pp. 39-96
-
-
Brook, M.A.1
-
6
-
-
57149094560
-
-
Auner, N, Weis, J, Eds, Wiley-VCH, Chapter 1
-
(f) Gaspar, P. P. In Organosilicon Chemistry VI: From Molecules to Materials; Auner, N., Weis, J., Eds.; Wiley-VCH, "2005; pp 10-24, Chapter 1.
-
(2005)
Organosilicon Chemistry VI: From Molecules to Materials
, pp. 10-24
-
-
Gaspar, P.P.1
-
7
-
-
0001797628
-
-
Patai, S, Rappoport. Z, Eds, Wiley, Chapter 2
-
(g) Apeloig, Y. In The Chemistry of Organic Silicon Compounds; Patai, S., Rappoport. Z., Eds.; Wiley, 1989; pp 57-226, Chapter 2.
-
(1989)
The Chemistry of Organic Silicon Compounds
, pp. 57-226
-
-
Apeloig, Y.1
-
8
-
-
0005063915
-
-
Rappoport, Z, Apeloig, Y, Eds, John Wiley & Sons, Chapter 1
-
(h) Apeloig, Y.; Karni M. In The Chemistry of Organic Silicon Compounds; Rappoport, Z., Apeloig, Y., Eds.; John Wiley & Sons, 1998; Vol. 2, pp 1-101, Chapter 1.
-
(1998)
The Chemistry of Organic Silicon Compounds
, vol.2
, pp. 1-101
-
-
Apeloig, Y.1
Karni, M.2
-
9
-
-
0001917369
-
-
Rappoport, Z, Apeloig, Y, Eds, John Wiley & Sons, Chapter 1
-
(i) Karni, M.; Apeloig, Y.; Kapp, J.; Schleyer, P. v. R. In The Chemistry of Organic Silicon Compounds; Rappoport, Z, Apeloig, Y., Eds.; John Wiley & Sons, 2001; Vol. 3, pp 1-163, Chapter 1.
-
(2001)
The Chemistry of Organic Silicon Compounds
, vol.3
, pp. 1-163
-
-
Karni, M.1
Apeloig, Y.2
Kapp, J.3
Schleyer, P.V.R.4
-
10
-
-
0031441287
-
-
(a) Weidenbruch, M.; Willms. S.; Saak, W.; Henkel, G. Angew. Chem., Int. Ed. 1997, 36, 2503.
-
(1997)
Angew. Chem., Int. Ed
, vol.36
, pp. 2503
-
-
Weidenbruch, M.1
Willms, S.2
Saak, W.3
Henkel, G.4
-
11
-
-
33845919557
-
-
(a) lchinohe, M.; Sanuki, K.; Inoue, S.; Sekiguchi, A. Silicon Chem. 2005, 3, 111.
-
(2005)
Silicon Chem
, vol.3
, pp. 111
-
-
lchinohe, M.1
Sanuki, K.2
Inoue, S.3
Sekiguchi, A.4
-
12
-
-
58149147830
-
-
Uchiyama, K.; Nagendran. S.; Ishida. S.; lwamoto. T.; Kira, M. J. Am. Chem. Soc. 2007, 129, 10638.
-
(b) Uchiyama, K.; Nagendran. S.; Ishida. S.; lwamoto. T.; Kira, M. J. Am. Chem. Soc. 2007, 129, 10638.
-
-
-
-
14
-
-
0000662792
-
-
Steinmetz, M. G.; Udayakumar, B. S.; Gordon, M. S. Organometallics 1989, 8, 530.
-
(1989)
Organometallics
, vol.8
, pp. 530
-
-
Steinmetz, M.G.1
Udayakumar, B.S.2
Gordon, M.S.3
-
15
-
-
0001585499
-
-
(a) Yoshizawa, K.; Kang, S.-Y.; Yamabe, T.; Naka, A.; Ishikawa, M. Organometallics 1999, 18, 4637.
-
(1999)
Organometallics
, vol.18
, pp. 4637
-
-
Yoshizawa, K.1
Kang, S.-Y.2
Yamabe, T.3
Naka, A.4
Ishikawa, M.5
-
16
-
-
0000137105
-
-
(b) Yoshizawa, K.; Shiota, Y.; Kang, S.-Y.; Yamabe, T. Organometallics 1997, 16, 5058.
-
(1997)
Organometallics
, vol.16
, pp. 5058
-
-
Yoshizawa, K.1
Shiota, Y.2
Kang, S.-Y.3
Yamabe, T.4
-
18
-
-
0003612389
-
-
Auner, N, Weis, J, Eds, VCH
-
Müller, T. In Organosilicon Chemistry IV. From Molecules to Materials; Auner, N., Weis, J, Eds.; VCH, 2000; pp 110-116.
-
(2000)
Organosilicon Chemistry IV. From Molecules to Materials
, pp. 110-116
-
-
Müller, T.1
-
22
-
-
58149148595
-
-
Glendening, E. D, Reed, A. E, Carpenter, J. E, Weinhold, F. NBO, Version 3.1
-
Glendening, E. D.; Reed, A. E.; Carpenter, J. E.; Weinhold, F. NBO, Version 3.1.
-
-
-
-
25
-
-
34548598669
-
-
(b) Mo, Y.; Song, L.; Lin, Y. J. Phys. Chem. A 2007, 111, 8291.
-
(2007)
J. Phys. Chem. A
, vol.111
, pp. 8291
-
-
Mo, Y.1
Song, L.2
Lin, Y.3
-
29
-
-
0345491105
-
-
(a) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785.
-
(1988)
Phys. Rev. B
, vol.37
, pp. 785
-
-
Lee, C.1
Yang, W.2
Parr, R.G.3
-
30
-
-
0000216001
-
-
(b)Vosko, S. H.; Wilk, L.; Nusair, M. Can. J. Phys. 1980, 58, 1200.
-
(1980)
Can. J. Phys
, vol.58
, pp. 1200
-
-
Vosko, S.H.1
Wilk, L.2
Nusair, M.3
-
31
-
-
58149163813
-
-
For first-row elements
-
For first-row elements
-
-
-
-
32
-
-
26844534384
-
-
For second-row elements
-
(a) Krishnan, R.; Binkley, J. S.; Seeger, R.; Pople, J. A. J. Chem. Phys. 1980, 72, 650. For second-row elements
-
(1980)
J. Chem. Phys
, vol.72
, pp. 650
-
-
Krishnan, R.1
Binkley, J.S.2
Seeger, R.3
Pople, J.A.4
-
34
-
-
4544229046
-
-
Polarization and diffuse functions in the basis set were found to be important for the geometry optimization of 1, 3-butadiene. Xi, H.-W, Li, W.-Z, Liu, F.-L; Huang, M.-B. J. Mole. Struct, Theochem 2004, 683, 71
-
Polarization and diffuse functions in the basis set were found to be important for the geometry optimization of 1, 3-butadiene. Xi, H.-W.; Li, W.-Z.; Liu, F.-L; Huang, M.-B. J. Mole. Struct. (Theochem) 2004, 683, 71.
-
-
-
-
36
-
-
84986444438
-
-
Pople, J. A.; Binkley, J. S.; Seeger, R. Int. J. Quantum Chem. 1976, 10, 1.
-
(1976)
Int. J. Quantum Chem
, vol.10
, pp. 1
-
-
Pople, J.A.1
Binkley, J.S.2
Seeger, R.3
-
39
-
-
36549098398
-
-
Scuseria, G. E.; Janssen, C. L.; Schaefer, H. F., III J. Chem. Phys. 1988, 89, 7382.
-
(1988)
J. Chem. Phys
, vol.89
, pp. 7382
-
-
Scuseria, G.E.1
Janssen, C.L.2
Schaefer III, H.F.3
-
40
-
-
36549094556
-
-
(a) Scuseria, G. E.; Schaefer, H. F., III, J. Chem. Phys. 1989, 90, 3700.
-
(1989)
J. Chem. Phys
, vol.90
, pp. 3700
-
-
Scuseria, G.E.1
Schaefer III, H.F.2
-
41
-
-
0006244148
-
-
(b) Ragavachari, K.; Trucks, G. W.; Pople, J. A.; Head-Gordon, M. Chem. Phys. Lett. 1989, 157, 479.
-
(1989)
Chem. Phys. Lett
, vol.157
, pp. 479
-
-
Ragavachari, K.1
Trucks, G.W.2
Pople, J.A.3
Head-Gordon, M.4
-
44
-
-
58149147822
-
-
Frisch, M. J, Trucks, G. W, Schlegel, H. B, Scuseria, G. E, Robb, M. A, Cheeseman, J. R, Montgomery, J. A, Jr, Vreven, T, Kudin, K. N, Burant, J. C, Millam, J. M, Iyengar, S. S, Tomasi, J, Barone, V, Mennucci, B, Cossi, M, Scalmani, G, Rega, N, Petersson, G. A, Nakatsuji, H, Hada, M, Ehara. M, Toyota, K, Fukuda, R, Hasegawa, J, Ishida, M, Nakajima, T, Honda, Y, Kitao, O, Nakai, H, Klene, M, Li, X, Knox, J. E, Hratchian, H. P, Cross, J. B, Bakken, V, Adamo, C, Jaramillo, J, Gomperts, R, Stratmann, R. E, Yazyev, O, Austin, A. J, Cammi, R, Pomelli, C, Ochterski, J. W, Ayala, P. Y, Morokuma, K, Voth, G. A, Salvador, P, Dannenberg, J. J, Zakrzewski, V. G, Dapprich, S, Daniels, A. D, Strain, M. C, Farkas, O, Malick, D. K, Rabuck, A. D, Raghavachari, K, Foresman, J. B, Ortiz, J. V, Cui, Q, Baboul, A. G, Clifford, S, Cioslowski, J, Stefanov, B. B, Liu, G, Liashenko, A, Piskorz, P, Komaromi, I, Martin, R. L, Fox, D. J, Keit
-
Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara. M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03, revision B.05; Gaussian, Inc.: Wallingford, CT, 2004.
-
-
-
-
45
-
-
84893169025
-
-
(a) Schmidt, M. W.; Baldridge, K. K.; Boatz, J. A.; Elbert, S. T.; Gordon, M. S.; Jensen, J. H.; Koseki, S.; Matsunaga, N.; Nguyen, K. A.; Su, S.; Windus, T. L.; Dupuis, M; Montgomery, J. A. J. Comput. Chem. 1993, 14, 1347-1363.
-
(1993)
J. Comput. Chem
, vol.14
, pp. 1347-1363
-
-
Schmidt, M.W.1
Baldridge, K.K.2
Boatz, J.A.3
Elbert, S.T.4
Gordon, M.S.5
Jensen, J.H.6
Koseki, S.7
Matsunaga, N.8
Nguyen, K.A.9
Su, S.10
Windus, T.L.11
Dupuis, M.12
Montgomery, J.A.13
-
46
-
-
58149158414
-
-
B3LYP in GAMESS uses VWN5 functional for local correlation
-
(b) B3LYP in GAMESS uses VWN5 functional for local correlation.
-
-
-
-
47
-
-
58149169360
-
Stereochemical definitions and notations: Moss, G. P
-
Stereochemical definitions and notations: Moss, G. P., Appl. Chem. 1996, 68, 2193.
-
(1996)
Appl. Chem
, vol.68
, pp. 2193
-
-
-
48
-
-
58149143498
-
-
The PES for internal rotation was conducted on 13 (although it is not a minimum and is slightly higher in energy).
-
The PES for internal rotation was conducted on 13 (although it is not a minimum and is slightly higher in energy).
-
-
-
-
49
-
-
0343265434
-
-
The significantly larger radial extension of 3p(Si) orbital relative to that of 2p(C) orbital1i, 31b leads to the following trend in p-orbital overlap (S, 3p(Si)-3p(Si) > 3p(Si)-2p(C) > 2p(C)-2p(C, at the same bond distances, e.g, the 3p(Si)-3p(Si) atomic orbital overlap (S(AO, in 6 and the 2p(C)-2p(C) S(AO) in 5 are 0.380 and 0.203, respectively (at B3LYP/STO-3G, constraining the Si-Si bond length in 6 to 1.427 Å, which is the optimized C-C bond length in 5, However, in optimized 6, r(Si-Si, 2.298 Å, and the 3p(Si)-3p(Si) S(AO) drops significantly to 0.102, leading to a smaller internal rotation barrier in 6 in comparison to 5, The above mentioned trend in S(AO) is also obtained in the calculated p(M1)-p(M2) S(AO) in H 2M1=M2H2 (C2h symmetry, at rM1=M2, 2.14 Á, Thus, for M 1=M
-
1g The conclusion from these data is that the central dienic single bond length is the major factor that controls the internal rotation barrier. The inherent trend of S(AO) at a particular bond distance is actually opposite to the observed trend in the internal rotation barriers, and the conclusion therefore is that it is overridden by other factors, (b) Kutzelnigg, W. Angew. Chem., Int. Ed. Engl. 1984, 23, 272.
-
-
-
-
50
-
-
58149176305
-
-
The optimized double-bond lengths in the s-trans conformers of 3 and 4 calculated at B3LYP in this study are somewhat longer than those calculated at HF/dζ, d(Si, 4 and the central single-bonds are somewhat shorter, e.g, at HF r(Si=C) and r(C-C) are 1.705 and 1.445 Å, respectively.4 Our B3LYP/6-311+G(d, p) optimized geometry of the s-cis conformer of 5 is almost equal to Yoshizawa' s 6 B3LYP/6-31G(d, p) optimized geometry. On the other hand, the B3LYP/6-311+G(d, p) optimized geometry of gauche 5 is considerably different from that calculated by Sakai at CASSCF/6-31G(d, p).7 For example, r(Si=C, 1.819 Á at CASSCF/6-31G(d, p, compared to 1.739, 1.735, and 1.734 Á, respectively, at B3LYP, MP2, and CCSD/6-311+G(d, p, The optimized bond lengths of the gauche conformer of 1, 3-disilabutadiene (7) calculated at CASSCF/6-31G(d, p)7 are close to ours, but the SiCCSi dihedral
-
9
-
-
-
-
52
-
-
33745699308
-
-
Structural evidence for π-conjugation in 1, 3-butadiene: Craig, N. C.; Groner, P.; McKean, D. C. j. Phys. Chem. A 2006, 110, 7461
-
Structural evidence for π-conjugation in 1, 3-butadiene: Craig, N. C.; Groner, P.; McKean, D. C. j. Phys. Chem. A 2006, 110, 7461
-
-
-
-
53
-
-
58149173730
-
-
ab* in 6 at r(Si-Si) constrained to 1.427 Å are 46.8 kcal/mol and 0.089 hartree, respectively (B3LYP/6-311+G(d, p)), significantly larger than the values for 5 at rC-C) = 1.427 Å and in marked contrast to the trend calculated bv using the longer optimized r(Si-Si) of 2.298 Å in 6 (Table 4).
-
ab* in 6 at r(Si-Si) constrained to 1.427 Å are 46.8 kcal/mol and 0.089 hartree, respectively (B3LYP/6-311+G(d, p)), significantly larger than the values for 5 at rC-C) = 1.427 Å and in marked contrast to the trend calculated bv using the longer optimized r(Si-Si) of 2.298 Å in 6 (Table 4).
-
-
-
-
54
-
-
58149165552
-
-
We compare VRE to NBO results because both calculations are done at the geometry of the delocalized ground state
-
(a) We compare VRE to NBO results because both calculations are done at the geometry of the delocalized ground state,
-
-
-
-
55
-
-
58149162206
-
-
11 the same as that calculated by using either BLW or NBO methods; however, the EDA energies lie in between the VREs and the NBO π-conjugation energies.
-
11 the same as that calculated by using either BLW or NBO methods; however, the EDA energies lie in between the VREs and the NBO π-conjugation energies.
-
-
-
-
56
-
-
0003399528
-
-
John Wiley & Sons: New York, Chapter 6
-
Hehre, W. J.; Radom, L.; Schleyer, P. V. R.; Pople, J. A. In Ab initio Molecular Orbital Theory: John Wiley & Sons: New York, 1986; pp 298-308, Chapter 6.
-
(1986)
Ab initio Molecular Orbital Theory
, pp. 298-308
-
-
Hehre, W.J.1
Radom, L.2
Schleyer, P.V.R.3
Pople, J.A.4
-
57
-
-
34748902875
-
-
Wodrich, M. D.; Wannere, C. S.; Mo, Y.; Jarowski, P. D.; Houk, K. N.; Schleyer, P. V. R. Chem. Eur. J. 2007, 13, 7731.
-
(2007)
Chem. Eur. J
, vol.13
, pp. 7731
-
-
Wodrich, M.D.1
Wannere, C.S.2
Mo, Y.3
Jarowski, P.D.4
Houk, K.N.5
Schleyer, P.V.R.6
-
58
-
-
0001260843
-
-
Kistiakowsky, G. B.; Ruhoff, J. R.; Smith, H. A.; Vaughan, W. E. J. Am. Chem. Soc. 1936, 58, 146.
-
(1936)
J. Am. Chem. Soc
, vol.58
, pp. 146
-
-
Kistiakowsky, G.B.1
Ruhoff, J.R.2
Smith, H.A.3
Vaughan, W.E.4
-
59
-
-
0043268851
-
-
π-Conjugation energy of 8.6 kcal/mol was measured experimentally4011 for 1, 3-butadiene from the difference between the experimental heat of hydrogenation of 1, 3-butadiene of-57.1 kcal/mol 39 and that of two molecules of ethylene which lack resonance stabilization (ΔHexp, 65.739, Taking into account the two protobranching 1-3-interactions of ca. 2.8 kcal/mol each, 38 which stabilizes n-butane, the hydrogenation product of 1.3-butadiene, leads to a π-conjugation energy of 14.2 kcal/mol. This value is in good agreement with the resonance energy calculated by bond separation energies (BSE, see also ref 38) and with the VRE (14.4 kcal/mol, Table 6, but it is significantly smaller than that calculated by using the NBO method (27.5 kcal/mol, The π-conjugation energies calculated for 1, 3-butadiene by using the energy decomposition analysis (EDA) is 19.5 kcal/mol.11 (b)Mo, Y J. Chem. Phys
-
11 (b)Mo, Y J. Chem. Phys. 2003, 119, 1300.
-
-
-
-
60
-
-
58149147828
-
-
Note that only eq 5 is isodesmi C.; eqs 4 and 6 are not.
-
Note that only eq 5 is isodesmi C.; eqs 4 and 6 are not.
-
-
-
-
62
-
-
58149165549
-
-
The effect of π-conjugation in structures 8, 9, 10, and 11 is probably slightly overestimated, because, in BLW, we used planar structures.
-
(a) The effect of π-conjugation in structures 8, 9, 10, and 11 is probably slightly overestimated, because, in BLW, we used planar structures.
-
-
-
-
63
-
-
58149153492
-
-
2) structure.
-
2) structure.
-
-
-
-
64
-
-
58149176313
-
-
2 = 0.684, which also do not follow the trend found in resonance energies calculated by either NBO or BLW.
-
2 = 0.684, which also do not follow the trend found in resonance energies calculated by either NBO or BLW.
-
-
-
-
65
-
-
58149167255
-
-
11 has been excluded from the correlation. Its rotation barrier is smaller than expected from the calculated π-conjugation energies with all methods of calculation.
-
11 has been excluded from the correlation. Its rotation barrier is smaller than expected from the calculated π-conjugation energies with all methods of calculation.
-
-
-
-
66
-
-
84926111067
-
-
Weinhold, F.; Landis, C. R. In Valency and Bonding: A Natural Bond Orbital Donor-Acceptor Perspective; Cambridge University Press. 2005; pp 226-252, Chpater 3.4.2.
-
Weinhold, F.; Landis, C. R. In Valency and Bonding: A Natural Bond Orbital Donor-Acceptor Perspective; Cambridge University Press. 2005; pp 226-252, Chpater 3.4.2.
-
-
-
-
67
-
-
58149155173
-
-
Similar conclusions were obtained regarding the rotation barrier in allvl cation, allyl anion. and allyl radical in a report by Mo. Y.; Song. L.; Lin, Y. J. Phys. Chem. A 2007, 111, 8291.
-
Similar conclusions were obtained regarding the rotation barrier in allvl cation, allyl anion. and allyl radical in a report by Mo. Y.; Song. L.; Lin, Y. J. Phys. Chem. A 2007, 111, 8291.
-
-
-
-
70
-
-
0033371601
-
-
Goodman, L.; Pophristic, V.; Weinhold, F. Acc. Chem. Res. 1999, 32, 983.
-
(1999)
Acc. Chem. Res
, vol.32
, pp. 983
-
-
Goodman, L.1
Pophristic, V.2
Weinhold, F.3
-
73
-
-
3042782943
-
-
Mo, Y.; Wu, W.; Song, L.; Lin, M.; Zhang, Q.; Gao, J. Angew. Chem., Int. Ed. 2004, 43, 1986.
-
(1986)
Angew. Chem., Int. Ed
, vol.2004
, pp. 43
-
-
Mo, Y.1
Wu, W.2
Song, L.3
Lin, M.4
Zhang, Q.5
Gao, J.6
|