-
1
-
-
0026038893
-
-
(a) Su, J.; Zhong, Y.; Zeng, L. J. Nat. Prod. 1991, 54, 380-385
-
(1991)
J. Nat. Prod
, vol.54
, pp. 380-385
-
-
Su, J.1
Zhong, Y.2
Zeng, L.3
-
2
-
-
0032563996
-
-
For a review on dolabellane natural products, see: b
-
For a review on dolabellane natural products, see: (b) Rodrígues, A. D.; González, E.; Ramírez, C. Tetrahedron 1998, 54, 11683-11729.
-
(1998)
Tetrahedron
, vol.54
, pp. 11683-11729
-
-
Rodrígues, A.D.1
González, E.2
Ramírez, C.3
-
3
-
-
0034728883
-
-
Syntheses of various fragments of this class of molecules have been disclosed previously. See: a
-
Syntheses of various fragments of this class of molecules have been disclosed previously. See: (a) Zeng, Z.; Xu, X. Tetrahedron Lett. 2000, 41, 3459-3461.
-
(2000)
Tetrahedron Lett
, vol.41
, pp. 3459-3461
-
-
Zeng, Z.1
Xu, X.2
-
4
-
-
0035917357
-
-
(b) Zhu, Q.; Qiao, L.; Wu, Y.; Wu, Y.-L. J. Org. Chem. 2001, 66, 2692-2699.
-
(2001)
J. Org. Chem
, vol.66
, pp. 2692-2699
-
-
Zhu, Q.1
Qiao, L.2
Wu, Y.3
Wu, Y.-L.4
-
7
-
-
0003520820
-
-
For discussions regarding the role of asymmetric catalysis in target-oriented synthesis, see: a, Stoddard, F. J, Shibasaki, M, Vogtle, F, Eds; Wiley-VCH: Weinheim
-
For discussions regarding the role of asymmetric catalysis in target-oriented synthesis, see: (a) Hoveyda, A. H. In Stimulating Concepts in Chemistry; Stoddard, F. J., Shibasaki, M., Vogtle, F., Eds; Wiley-VCH: Weinheim, 2000; pp 145-160.
-
(2000)
Stimulating Concepts in Chemistry
, pp. 145-160
-
-
Hoveyda, A.H.1
-
9
-
-
26444455993
-
-
For recent enantioselective syntheses of related members of the dolabellane family of natural products, see: (a) Kingsbury, J. S, Corey, E. J. J. Am. Chem. Soc. 2005, 127, 13813-13815
-
For recent enantioselective syntheses of related members of the dolabellane family of natural products, see: (a) Kingsbury, J. S.; Corey, E. J. J. Am. Chem. Soc. 2005, 127, 13813-13815.
-
-
-
-
12
-
-
4644299863
-
-
For an overview regarding the use of amino acid based chiral catalysts for catalytic ACA reactions, see
-
For an overview regarding the use of amino acid based chiral catalysts for catalytic ACA reactions, see: Hoveyda, A. H.; Hird, A. W.; Kacprzynski, M. A. Chem. Commun. 2004, 1779-1785.
-
(2004)
Chem. Commun
, pp. 1779-1785
-
-
Hoveyda, A.H.1
Hird, A.W.2
Kacprzynski, M.A.3
-
13
-
-
1442360753
-
-
Grubbs, R. H, Ed, Wiley-VCH: Weinheim
-
(a) Handbook of Metathesis; Grubbs, R. H., Ed.; Wiley-VCH: Weinheim: 2003.
-
(2003)
Handbook of Metathesis
-
-
-
15
-
-
0000172608
-
-
Still, W. C.; MacPherson, L. J.; Harada, T.; Callahan, J. F.; Rheingold, A. L. Tetrahedron 1984, 40, 2275-2281.
-
(1984)
Tetrahedron
, vol.40
, pp. 2275-2281
-
-
Still, W.C.1
MacPherson, L.J.2
Harada, T.3
Callahan, J.F.4
Rheingold, A.L.5
-
16
-
-
36749091836
-
-
Three cases of ACA of trialkylaluminum reagents to β-substituted cyclopentenones, catalyzed by chiral Cu-phosphoramidites, have been reported. High selectivity and efficiency are observed in only one instance involving a relatively reactive nucleophile (Et3Al: 96.5:3.5 er, 93% ee). See: Vuagnoux-d'Augustin, M.; Alexakis, A. Chem. - Eur. J. 2007, 13, 9647-9662, and references cited therein.
-
Three cases of ACA of trialkylaluminum reagents to β-substituted cyclopentenones, catalyzed by chiral Cu-phosphoramidites, have been reported. High selectivity and efficiency are observed in only one instance involving a relatively reactive nucleophile (Et3Al: 96.5:3.5 er, 93% ee). See: Vuagnoux-d'Augustin, M.; Alexakis, A. Chem. - Eur. J. 2007, 13, 9647-9662, and references cited therein.
-
-
-
-
17
-
-
14844320728
-
-
(a) d'Augustin, M.; Palais, L.; Alexakis, A. Angew. Chem., Int. Ed. 2005, 44, 1376-1378.
-
(2005)
Angew. Chem., Int. Ed
, vol.44
, pp. 1376-1378
-
-
d'Augustin, M.1
Palais, L.2
Alexakis, A.3
-
18
-
-
33744926164
-
-
(b) Lee, K.-S.; Brown, M. K.; Hird, A. W.; Hoveyda, A. H. J. Am. Chem. Soc. 2006, 128, 7182-7184.
-
(2006)
J. Am. Chem. Soc
, vol.128
, pp. 7182-7184
-
-
Lee, K.-S.1
Brown, M.K.2
Hird, A.W.3
Hoveyda, A.H.4
-
19
-
-
33745728242
-
-
(c) Martin, D.; Kehrli, S.; d'Augustin, M.; Clavier, H.; Mauduit, M.; Alexakis, A. J. Am. Chem. Soc. 2006, 128, 8416-8417.
-
(2006)
J. Am. Chem. Soc
, vol.128
, pp. 8416-8417
-
-
Martin, D.1
Kehrli, S.2
d'Augustin, M.3
Clavier, H.4
Mauduit, M.5
Alexakis, A.6
-
20
-
-
45249088116
-
-
(d) Matsumoto, Y.; Yamada, K.-i.; Tomioka, K. J. Org. Chem. 2008, 73, 4578-4581.
-
(2008)
J. Org. Chem
, vol.73
, pp. 4578-4581
-
-
Matsumoto, Y.1
Yamada, K.-I.2
Tomioka, K.3
-
21
-
-
34247201978
-
-
Brown, M. K.; May, T. L.; Baxter, C. A.; Hoveyda, A. H. Angew Chem., Int. Ed. 2008, 46, 1097-1100. One application of catalytic ACA promoted by a chiral NHC·Cu complex (derived from 1) to natural product synthesis has appeared. The transformation, however, involves a six-membered ring enone bearing an activating β-substituent.
-
(a) Brown, M. K.; May, T. L.; Baxter, C. A.; Hoveyda, A. H. Angew Chem., Int. Ed. 2008, 46, 1097-1100. One application of catalytic ACA promoted by a chiral NHC·Cu complex (derived from 1) to natural product synthesis has appeared. The transformation, however, involves a six-membered ring enone bearing an activating β-substituent.
-
-
-
-
23
-
-
34250705242
-
-
For asymmetric allylic alkylation reactions involving Al-based reagents promoted by chiral bidentate NHC·Cu complexes, see: (a) Gillingham, D. G, Hoveyda, A. H. Angew. Chem, Int. Ed. 2007, 46, 3860-3864
-
For asymmetric allylic alkylation reactions involving Al-based reagents promoted by chiral bidentate NHC·Cu complexes, see: (a) Gillingham, D. G.; Hoveyda, A. H. Angew. Chem., Int. Ed. 2007, 46, 3860-3864.
-
-
-
-
24
-
-
40149087402
-
-
(b) Lee, Y.; Akiyama, K.; Gillingham, D. G.; Brown, M. K.; Hoveyda, A. H. J. Am. Chem. Soc. 2008, 130, 446-447.
-
(2008)
J. Am. Chem. Soc
, vol.130
, pp. 446-447
-
-
Lee, Y.1
Akiyama, K.2
Gillingham, D.G.3
Brown, M.K.4
Hoveyda, A.H.5
-
25
-
-
24044546502
-
-
Brown, M. K.; Degrado, S. J.; Hoveyda, A. H. Angew. Chem., Int. Ed. 2005, 44, 5306-5310.
-
(2005)
Angew. Chem., Int. Ed
, vol.44
, pp. 5306-5310
-
-
Brown, M.K.1
Degrado, S.J.2
Hoveyda, A.H.3
-
26
-
-
49049133569
-
-
For related diastereoselective aldol additions involving boron enolates, see
-
For related diastereoselective aldol additions involving boron enolates, see: Yamamoto, Y.; Yatagai, H.; Maruyama, K. Tetrahedron Lett. 1982, 23, 2387-2390.
-
(1982)
Tetrahedron Lett
, vol.23
, pp. 2387-2390
-
-
Yamamoto, Y.1
Yatagai, H.2
Maruyama, K.3
-
27
-
-
67650524537
-
-
The diastereomeric ratio can be increased from 1.5:1 to 4:1 (C1-C11) through partial separation of diastereomers by silica gel column chromatography. Silyl ether diastereomers (at C6) undergo Ru-catalyzed RCM with equal facility.
-
The diastereomeric ratio can be increased from 1.5:1 to 4:1 (C1-C11) through partial separation of diastereomers by silica gel column chromatography. Silyl ether diastereomers (at C6) undergo Ru-catalyzed RCM with equal facility.
-
-
-
-
28
-
-
0034734340
-
-
Garber, S. B.; Kingsbury, J. S.; Gray, B. L.; Hoveyda, A. H. J. Am. Chem. Soc. 2000, 122, 8168-8179.
-
(2000)
J. Am. Chem. Soc
, vol.122
, pp. 8168-8179
-
-
Garber, S.B.1
Kingsbury, J.S.2
Gray, B.L.3
Hoveyda, A.H.4
-
29
-
-
67650542396
-
-
Under rigorously anhydrous conditions, 5 mol % 13 can be used to obtain similar results. With 20 mol % 13, yields exceed 80% without resorting to the use of strictly anhydrous conditions.
-
Under rigorously anhydrous conditions, 5 mol % 13 can be used to obtain similar results. With 20 mol % 13, yields exceed 80% without resorting to the use of strictly anhydrous conditions.
-
-
-
-
30
-
-
0032482544
-
-
For use of catalytic RCM to access 11-membered rings in syntheses of natural products or biologically active agents, see: (a) El Sukkari, H.; Gesson, J.-P.; Renoux, B. Tetrahedron Lett. 1998, 39, 4043-4046.
-
For use of catalytic RCM to access 11-membered rings in syntheses of natural products or biologically active agents, see: (a) El Sukkari, H.; Gesson, J.-P.; Renoux, B. Tetrahedron Lett. 1998, 39, 4043-4046.
-
-
-
-
31
-
-
0033516688
-
-
(b) Winkler, J. D.; Holland, J. M.; Kasparec, J.; Axelsen, P. H. Tetrahedron 1999, 55, 8199-8214.
-
(1999)
Tetrahedron
, vol.55
, pp. 8199-8214
-
-
Winkler, J.D.1
Holland, J.M.2
Kasparec, J.3
Axelsen, P.H.4
-
33
-
-
20944434191
-
-
(d) Nicolaou, K. C.; Montagnon, T.; Vassilikogiannakis, G.; Mathison, C. J. N. J. Am. Chem. Soc. 2005, 127, 8872-8888.
-
(2005)
J. Am. Chem. Soc
, vol.127
, pp. 8872-8888
-
-
Nicolaou, K.C.1
Montagnon, T.2
Vassilikogiannakis, G.3
Mathison, C.J.N.4
-
35
-
-
33749026617
-
-
For a brief overview of macrocyclization reactions through catalytic RCM, see: f
-
For a brief overview of macrocyclization reactions through catalytic RCM, see: (f) Gradillas, A.; Pérez-Castells, J. Angew. Chem., Int. Ed. 2006, 45, 6086-6101.
-
(2006)
Angew. Chem., Int. Ed
, vol.45
, pp. 6086-6101
-
-
Gradillas, A.1
Pérez-Castells, J.2
-
36
-
-
0033598258
-
-
Scholl, M.; Ding, S.; Lee, C. W.; Grubbs, R. H. Org. Lett. 1999, 1, 953-956.
-
(1999)
Org. Lett
, vol.1
, pp. 953-956
-
-
Scholl, M.1
Ding, S.2
Lee, C.W.3
Grubbs, R.H.4
-
37
-
-
1642462100
-
-
Use of sterically and electronically modified versions of complex 13 leads to the formation of 14 with similar efficiency. For a discussion of the utility of such complexes and the attributes of phosphine-free Ru-based carbenes in catalytic olefin metathesis, see: Hoveyda, A. H.; Gillingham, D. G.; Van Veldhuizen, J. J.; Kataoka, O.; Garber, S. B.; Kingsbury, J. S.; Harrity, J. P. A. Org. Biomol. Chem. 2004, 2, 8-23.
-
Use of sterically and electronically modified versions of complex 13 leads to the formation of 14 with similar efficiency. For a discussion of the utility of such complexes and the attributes of phosphine-free Ru-based carbenes in catalytic olefin metathesis, see: Hoveyda, A. H.; Gillingham, D. G.; Van Veldhuizen, J. J.; Kataoka, O.; Garber, S. B.; Kingsbury, J. S.; Harrity, J. P. A. Org. Biomol. Chem. 2004, 2, 8-23.
-
-
-
-
38
-
-
67650512149
-
-
A similar sequence has been carried en route to the clavirolides; see ref 2a,b
-
A similar sequence has been carried en route to the clavirolides; see ref 2a,b.
-
-
-
-
40
-
-
67650524532
-
-
2CuLi·LiI followed by aqueous workup, the 3:1 mixture at C18 is transformed to a single stereoisomer (R).
-
2CuLi·LiI followed by aqueous workup, the 3:1 mixture at C18 is transformed to a single stereoisomer (R).
-
-
-
-
41
-
-
67650512152
-
-
See Supporting Information for additional details, including relevant X-ray data
-
See Supporting Information for additional details, including relevant X-ray data.
-
-
-
-
42
-
-
67650527610
-
-
See Supporting Information for complete spectral and physical data
-
See Supporting Information for complete spectral and physical data.
-
-
-
-
43
-
-
53249101813
-
-
For an account of the scope and limitation of this class of Cu-catalyzed ACA reactions, see
-
For an account of the scope and limitation of this class of Cu-catalyzed ACA reactions, see: May, T. L.; Brown, M. K.; Hoveyda, A. H. Angew. Chem., Int. Ed. 2008, 47, 7358-7362.
-
(2008)
Angew. Chem., Int. Ed
, vol.47
, pp. 7358-7362
-
-
May, T.L.1
Brown, M.K.2
Hoveyda, A.H.3
-
44
-
-
0034801512
-
-
Due to the substantial difference in size of the substituents R to the enolsilane (e.g., H vs alkyl), this stereochemical issue is more easily addressed in the catalytic ACA/aldol sequence involving non-β-substituted cycloalkenones. For example, see: Arnold, L. A.; Naasz, R.; Minnaard, A. J.; Feringa, B. L. J. Am. Chem. Soc. 2001, 123, 5841-5842.
-
Due to the substantial difference in size of the substituents R to the enolsilane (e.g., H vs alkyl), this stereochemical issue is more easily addressed in the catalytic ACA/aldol sequence involving non-β-substituted cycloalkenones. For example, see: Arnold, L. A.; Naasz, R.; Minnaard, A. J.; Feringa, B. L. J. Am. Chem. Soc. 2001, 123, 5841-5842.
-
-
-
-
45
-
-
0032572895
-
-
Enantioselective aldol additions of five-membered ring enolsilanes to aryl-derived aldehydes have been reported. Reactions with alkyl-substituted aldehydes, however, are either inefficient or not included in such disclosures. See: (a) Denmark, S. E, Stavenger, R. A, Wong, K-.T. Tetrahedron 1998, 54, 10389-10402
-
Enantioselective aldol additions of five-membered ring enolsilanes to aryl-derived aldehydes have been reported. Reactions with alkyl-substituted aldehydes, however, are either inefficient or not included in such disclosures. See: (a) Denmark, S. E.; Stavenger, R. A.; Wong, K-.T. Tetrahedron 1998, 54, 10389-10402.
-
-
-
-
46
-
-
0030827816
-
-
(b) Yanagisawa, A.; Matsumoto, Y.; Nakashima, H.; Asakawa, K.; Yamamoto, H. J. Am. Chem. Soc. 1997, 119, 9319-9320.
-
(1997)
J. Am. Chem. Soc
, vol.119
, pp. 9319-9320
-
-
Yanagisawa, A.1
Matsumoto, Y.2
Nakashima, H.3
Asakawa, K.4
Yamamoto, H.5
-
47
-
-
0037037982
-
-
(c) Yanagisawa, A.; Matsumoto, Y.; Asakawa, K.; Yamamoto, H. Tetrahedron 2002, 58, 8331-8339.
-
(2002)
Tetrahedron
, vol.58
, pp. 8331-8339
-
-
Yanagisawa, A.1
Matsumoto, Y.2
Asakawa, K.3
Yamamoto, H.4
|