-
1
-
-
33845348922
-
Parameter space structure of continuous-time recurrent neural networks
-
R. D. Beer. Parameter space structure of continuous-time recurrent neural networks. Neural Computation, 18(12):3009-3051, 2006.
-
(2006)
Neural Computation
, vol.18
, Issue.12
, pp. 3009-3051
-
-
Beer, R.D.1
-
2
-
-
84977052581
-
Evolving dynamic neural networks for adaptive behaviour
-
R. D. Beer and J. C. Gallagher. Evolving dynamic neural networks for adaptive behaviour. Adaptive Behaviour, 1(1):91-122, 1992.
-
(1992)
Adaptive Behaviour
, vol.1
, Issue.1
, pp. 91-122
-
-
Beer, R.D.1
Gallagher, J.C.2
-
3
-
-
9144262443
-
Levels of dynamics and adaptive behavior in evolutionary neural controllers
-
Cambridge, MA, USA, MIT Press
-
J. Blynel and D. Floreano. Levels of dynamics and adaptive behavior in evolutionary neural controllers. In Proceedings of the seventh international conference on simulation of adaptive behavior on From animals to animats, pages 272-281, Cambridge, MA, USA, 2002. MIT Press.
-
(2002)
Proceedings of the seventh international conference on simulation of adaptive behavior on From animals to animats
, pp. 272-281
-
-
Blynel, J.1
Floreano, D.2
-
4
-
-
33750257304
-
A comparison between cellular encoding and direct encoding for genetic neural networks
-
Berlin, Germany, Springer-Verlag
-
P. Dürr, C. Mattiussi, and D. Floreano. A comparison between cellular encoding and direct encoding for genetic neural networks. In Proceedings of the 9th Conference on Parallel Problem Solving from Nature, volume 9, pages 671-680, Berlin, Germany, 2006. Springer-Verlag.
-
(2006)
Proceedings of the 9th Conference on Parallel Problem Solving from Nature
, vol.9
, pp. 671-680
-
-
Dürr, P.1
Mattiussi, C.2
Floreano, D.3
-
6
-
-
55349116293
-
Neuroevolution: From architectures to learning
-
D. Floreano, P. Dürr, and C. Mattiussi. Neuroevolution: from architectures to learning. Evolutionary Intelligence, 1(1):47-62, 2008.
-
(2008)
Evolutionary Intelligence
, vol.1
, Issue.1
, pp. 47-62
-
-
Floreano, D.1
Dürr, P.2
Mattiussi, C.3
-
7
-
-
27644545346
-
Biologically inspired neural networks for the control of embodied agents
-
Technical report, Center for Cognitive and Neural Studies Coneural
-
R. V. Florian. Biologically inspired neural networks for the control of embodied agents. Technical report, Center for Cognitive and Neural Studies (Coneural), 2003.
-
(2003)
-
-
Florian, R.V.1
-
8
-
-
21244457900
-
-
PhD thesis, The University of Texas at Austin, Texas, USA, Department of Computer Sciences
-
F. J. Gomez. Robust non-linear control through neuroevolution. PhD thesis, The University of Texas at Austin, Texas, USA, 2003. Department of Computer Sciences.
-
(2003)
Robust non-linear control through neuroevolution
-
-
Gomez, F.J.1
-
10
-
-
58149145998
-
-
F. Gruau. Neural Network Synthesis Using Cellular Encoding and the GA. PhD thesis, l'Ecole Normale Superieure de Lyon, 1994.
-
F. Gruau. Neural Network Synthesis Using Cellular Encoding and the GA. PhD thesis, l'Ecole Normale Superieure de Lyon, 1994.
-
-
-
-
12
-
-
0020118274
-
Neural networks and physical systems with emergent collective computational abilities
-
J. J. Hopfield. Neural networks and physical systems with emergent collective computational abilities. Proceedings of the National Academy of Sciences, 79:2554-2558, 1982.
-
(1982)
Proceedings of the National Academy of Sciences
, vol.79
, pp. 2554-2558
-
-
Hopfield, J.J.1
-
13
-
-
34248143032
-
Covariance matrix adaptation for multi-objective optimization
-
C. Igel, N. Hansen, and S. Roth. Covariance matrix adaptation for multi-objective optimization. Evolutionary Computation, 15:1-28, 2007.
-
(2007)
Evolutionary Computation
, vol.15
, pp. 1-28
-
-
Igel, C.1
Hansen, N.2
Roth, S.3
-
14
-
-
0031472340
-
Networks of spiking neurons: The third generation of neural network models
-
W. Maas. Networks of spiking neurons: the third generation of neural network models. Neural Networks, 10(9):1659-1671, 1997.
-
(1997)
Neural Networks
, vol.10
, Issue.9
, pp. 1659-1671
-
-
Maas, W.1
-
17
-
-
27144536042
-
-
PhD thesis, The University Of Texas At Austin, Department Of Computer Sciences, Texas, USA, August
-
K. Stanley. Efficient Evolution of Neural Networks Through Complexification. PhD thesis, The University Of Texas At Austin, Department Of Computer Sciences, Texas, USA, August 2004.
-
(2004)
Efficient Evolution of Neural Networks Through Complexification
-
-
Stanley, K.1
-
18
-
-
0036594106
-
Evolving neural networks through augmenting topologies
-
K. Stanley and R. Miikkulaien. Evolving neural networks through augmenting topologies. Evolutionary Computation, 10:99-127, 2002.
-
(2002)
Evolutionary Computation
, vol.10
, pp. 99-127
-
-
Stanley, K.1
Miikkulaien, R.2
-
19
-
-
0026626840
-
Evolving neural network controllers for unstable systems
-
Seattle, WA, USA, IEEE
-
A. P. Wieland. Evolving neural network controllers for unstable systems. In Proceedings of the International Joint Conference on Neural Networks, volume 2, pages 667-673, Seattle, WA, USA, 1991. IEEE.
-
(1991)
Proceedings of the International Joint Conference on Neural Networks
, vol.2
, pp. 667-673
-
-
Wieland, A.P.1
-
20
-
-
84948957794
-
Global optimization methods for designing and training neural networks
-
Washington, DC, USA, IEEE Computer Society
-
A. Yamazaki, T. Ludermir, and M. de Souto. Global optimization methods for designing and training neural networks. In Proceedings of the 7th Brazilian Symposium on Neural Networks, pages 136-141, Washington, DC, USA, 2002. IEEE Computer Society.
-
(2002)
Proceedings of the 7th Brazilian Symposium on Neural Networks
, pp. 136-141
-
-
Yamazaki, A.1
Ludermir, T.2
de Souto, M.3
-
21
-
-
0027653233
-
A review of evolutionary artificial neural networks
-
X. Yao. A review of evolutionary artificial neural networks. International Journal of Intelligent Systems, 4:203-222, 1993.
-
(1993)
International Journal of Intelligent Systems
, vol.4
, pp. 203-222
-
-
Yao, X.1
|