메뉴 건너뛰기




Volumn , Issue , 2008, Pages 177-182

Structural and parametric evolution of continuous-time recurrent neural networks

Author keywords

[No Author keywords available]

Indexed keywords

CLASS OF METHODS; CONTINUOUS TIMES; CONTROL BENCHMARKS; CONTROL TASKS; EVOLVING NEURAL NETWORKS; NEUROEVOLUTION; NEURON MODELS; PARAMETRIC EVOLUTIONS; POTENTIAL APPLICABILITIES; SIGMOIDAL NEURONS; VARIATIONS OF;

EID: 58149153253     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/SBRN.2008.12     Document Type: Conference Paper
Times cited : (6)

References (21)
  • 1
    • 33845348922 scopus 로고    scopus 로고
    • Parameter space structure of continuous-time recurrent neural networks
    • R. D. Beer. Parameter space structure of continuous-time recurrent neural networks. Neural Computation, 18(12):3009-3051, 2006.
    • (2006) Neural Computation , vol.18 , Issue.12 , pp. 3009-3051
    • Beer, R.D.1
  • 2
    • 84977052581 scopus 로고
    • Evolving dynamic neural networks for adaptive behaviour
    • R. D. Beer and J. C. Gallagher. Evolving dynamic neural networks for adaptive behaviour. Adaptive Behaviour, 1(1):91-122, 1992.
    • (1992) Adaptive Behaviour , vol.1 , Issue.1 , pp. 91-122
    • Beer, R.D.1    Gallagher, J.C.2
  • 4
    • 33750257304 scopus 로고    scopus 로고
    • A comparison between cellular encoding and direct encoding for genetic neural networks
    • Berlin, Germany, Springer-Verlag
    • P. Dürr, C. Mattiussi, and D. Floreano. A comparison between cellular encoding and direct encoding for genetic neural networks. In Proceedings of the 9th Conference on Parallel Problem Solving from Nature, volume 9, pages 671-680, Berlin, Germany, 2006. Springer-Verlag.
    • (2006) Proceedings of the 9th Conference on Parallel Problem Solving from Nature , vol.9 , pp. 671-680
    • Dürr, P.1    Mattiussi, C.2    Floreano, D.3
  • 7
    • 27644545346 scopus 로고    scopus 로고
    • Biologically inspired neural networks for the control of embodied agents
    • Technical report, Center for Cognitive and Neural Studies Coneural
    • R. V. Florian. Biologically inspired neural networks for the control of embodied agents. Technical report, Center for Cognitive and Neural Studies (Coneural), 2003.
    • (2003)
    • Florian, R.V.1
  • 8
    • 21244457900 scopus 로고    scopus 로고
    • PhD thesis, The University of Texas at Austin, Texas, USA, Department of Computer Sciences
    • F. J. Gomez. Robust non-linear control through neuroevolution. PhD thesis, The University of Texas at Austin, Texas, USA, 2003. Department of Computer Sciences.
    • (2003) Robust non-linear control through neuroevolution
    • Gomez, F.J.1
  • 10
    • 58149145998 scopus 로고    scopus 로고
    • F. Gruau. Neural Network Synthesis Using Cellular Encoding and the GA. PhD thesis, l'Ecole Normale Superieure de Lyon, 1994.
    • F. Gruau. Neural Network Synthesis Using Cellular Encoding and the GA. PhD thesis, l'Ecole Normale Superieure de Lyon, 1994.
  • 12
    • 0020118274 scopus 로고
    • Neural networks and physical systems with emergent collective computational abilities
    • J. J. Hopfield. Neural networks and physical systems with emergent collective computational abilities. Proceedings of the National Academy of Sciences, 79:2554-2558, 1982.
    • (1982) Proceedings of the National Academy of Sciences , vol.79 , pp. 2554-2558
    • Hopfield, J.J.1
  • 13
    • 34248143032 scopus 로고    scopus 로고
    • Covariance matrix adaptation for multi-objective optimization
    • C. Igel, N. Hansen, and S. Roth. Covariance matrix adaptation for multi-objective optimization. Evolutionary Computation, 15:1-28, 2007.
    • (2007) Evolutionary Computation , vol.15 , pp. 1-28
    • Igel, C.1    Hansen, N.2    Roth, S.3
  • 14
    • 0031472340 scopus 로고    scopus 로고
    • Networks of spiking neurons: The third generation of neural network models
    • W. Maas. Networks of spiking neurons: the third generation of neural network models. Neural Networks, 10(9):1659-1671, 1997.
    • (1997) Neural Networks , vol.10 , Issue.9 , pp. 1659-1671
    • Maas, W.1
  • 17
  • 18
    • 0036594106 scopus 로고    scopus 로고
    • Evolving neural networks through augmenting topologies
    • K. Stanley and R. Miikkulaien. Evolving neural networks through augmenting topologies. Evolutionary Computation, 10:99-127, 2002.
    • (2002) Evolutionary Computation , vol.10 , pp. 99-127
    • Stanley, K.1    Miikkulaien, R.2
  • 20
    • 84948957794 scopus 로고    scopus 로고
    • Global optimization methods for designing and training neural networks
    • Washington, DC, USA, IEEE Computer Society
    • A. Yamazaki, T. Ludermir, and M. de Souto. Global optimization methods for designing and training neural networks. In Proceedings of the 7th Brazilian Symposium on Neural Networks, pages 136-141, Washington, DC, USA, 2002. IEEE Computer Society.
    • (2002) Proceedings of the 7th Brazilian Symposium on Neural Networks , pp. 136-141
    • Yamazaki, A.1    Ludermir, T.2    de Souto, M.3
  • 21
    • 0027653233 scopus 로고
    • A review of evolutionary artificial neural networks
    • X. Yao. A review of evolutionary artificial neural networks. International Journal of Intelligent Systems, 4:203-222, 1993.
    • (1993) International Journal of Intelligent Systems , vol.4 , pp. 203-222
    • Yao, X.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.