메뉴 건너뛰기




Volumn 112, Issue 51, 2008, Pages 13662-13671

Electric dipole (hyper)polarizabilities of selected X2Y 2 and X3Y3 (X = Al, Ga, In and Y = P, As): III-V semiconductor clusters. An ab initio comparative study

Author keywords

[No Author keywords available]

Indexed keywords

AB INITIO; BASIS SET EFFECTS; BASIS SETS; CCSD; COMPARATIVE STUDIES; CORE POTENTIALS; COUPLE CLUSTERS; COUPLED CLUSTERS; D ELECTRONS; ELECTRIC DIPOLES; ELECTRON CORRELATION EFFECTS; ELECTRON TRANSFERS; ELECTRONEGATIVE ATOMS; HYPERPOLARIZABILITIES; HYPERPOLARIZABILITY; MANY BODIES; NUCLEAR CHARGES; POLARIZABILITIES; POLARIZABILITY; PSEUDO POTENTIALS; RELATIVISTIC EFFECTS; RELATIVISTIC ELECTRONS; ROUGH ESTIMATIONS; SECOND HYPERPOLARIZABILITIES; SECOND ORDERS; SEMI-CONDUCTORS; SEMICONDUCTOR CLUSTERS; VALENCE ELECTRONS;

EID: 58149149633     PISSN: 10895639     EISSN: None     Source Type: Journal    
DOI: 10.1021/jp8071603     Document Type: Article
Times cited : (23)

References (58)
  • 15
    • 58149171011 scopus 로고    scopus 로고
    • Becker. A. Angew. Chem., Int. Ed. Engl. 1997, 36, 1390. Schnell. M.; Herwig, C.; Becker, J. A. Z. Phys. Chem. 2003, 217, 1003.
    • Becker. A. Angew. Chem., Int. Ed. Engl. 1997, 36, 1390. Schnell. M.; Herwig, C.; Becker, J. A. Z. Phys. Chem. 2003, 217, 1003.
  • 36
    • 0038067797 scopus 로고    scopus 로고
    • Lan, Z. Y.; W, D.; Cheng. D. W.; Wu, S. D.; Zhang, PL; Gong, J. Y. Chem. Phys. Lett. 2003, 372, 645.
    • Lan, Z. Y.; W, D.; Cheng. D. W.; Wu, S. D.; Zhang, PL; Gong, J. Y. Chem. Phys. Lett. 2003, 372, 645.
  • 37
    • 0142135350 scopus 로고    scopus 로고
    • Maroulis, G.; Pouchan, C. J. Phys. Chem. B 2003, 107, 10683. Papadopoulos, M. G.; Reis, H.; Avramopoulos. A.; Erkoç. S.: Amirouche. L. J. Phys. Chem B 2005, 209, 18822. Mol. Phys. 2006, 104. 2027. Sen, S.; Chakrabarti, S. Phys. Rev. B 2006, 74, 205435.
    • Maroulis, G.; Pouchan, C. J. Phys. Chem. B 2003, 107, 10683. Papadopoulos, M. G.; Reis, H.; Avramopoulos. A.; Erkoç. S.: Amirouche. L. J. Phys. Chem B 2005, 209, 18822. Mol. Phys. 2006, 104. 2027. Sen, S.; Chakrabarti, S. Phys. Rev. B 2006, 74, 205435.
  • 40
    • 0001564241 scopus 로고    scopus 로고
    • Maroulis. G. J. Chem. Phys. 1998, 108, 5432. J. Chem. Phys., 2003, 118, 2673.
    • Maroulis. G. J. Chem. Phys. 1998, 108, 5432. J. Chem. Phys., 2003, 118, 2673.
  • 41
    • 58149160743 scopus 로고    scopus 로고
    • Szabo, A.; Ostlund, N. S. Modem Quantum Chemistry; MacMillan: New York, 1982.
    • Szabo, A.; Ostlund, N. S. Modem Quantum Chemistry; MacMillan: New York, 1982.
  • 44
    • 58149155339 scopus 로고    scopus 로고
    • Frisch, M. J, Trucks, G. W, Schlegel, H. B, Scuseria, G. E, Robb, M. A, Cheeseman, J. R, Zakrzewski, V. G. Montgomery, J. A, Jr, Stratmann, R. E, Burant, J. C, Dapprich, S, Millam, J. M, Daniels, A. D. Kudin, K. N, Strain, M. C; Farkas, O, Tomasi, J, Barone, V, Cossi, M, Cammi, R, Mennucci, B, Pomelli, C; Adamo, C, Clifford, S, Ochterski, J, Petersson, G. A, Ayala, P. Y, Cui, Q, Morokuma, K, Rega, N, Salvador, P, Dannenberg, J. J, Malick, D. K, Rabuck, A. D, Raghavachari, K, Foresman, J. B, Cioslowski, J, Ortiz, J. V, Baboul, A. G, Stefanov, B. B, Liu, G, Liashenko, A, Piskorz, P, Komaromi, I, Gomperts, R, Martin, R. L, Fox, D. J, Keith, T, Al-Laham, M. A, Peng, C. Y, Nanayakkara, A, Challacombe, M, Gill, P. M. W, Johnson, B, Chen, W, Wong, M. W, Andres, J. L, Gonzalez, C; Head-Gordon, M, Replogle, E. S, Pople, J. A. Gaussian 98, Revision A. 11.3; Gaussian. Inc, Pittsburgh. PA, 2002
    • Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G. Montgomery, J. A., Jr.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D. Kudin, K. N.; Strain, M. C; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Rega, N.; Salvador, P.; Dannenberg, J. J.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Baboul, A. G.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Andres, J. L.; Gonzalez, C; Head-Gordon, M.; Replogle, E. S.: Pople, J. A. Gaussian 98, Revision A. 11.3; Gaussian. Inc.: Pittsburgh. PA, 2002.
  • 45
    • 58149167529 scopus 로고    scopus 로고
    • Dolg. M. Chem. Phys. Lett. 1998, 250, 75. J. Chem. Phys.. 1996, 105, 1052.
    • Dolg. M. Chem. Phys. Lett. 1998, 250, 75. J. Chem. Phys.. 1996, 105, 1052.
  • 52
    • 58149142062 scopus 로고    scopus 로고
    • Private communication with T. Pluta. The analytic (hyper)polarizability calculations have been carried out with the DALTON suite of programs, release 2.02004, htto
    • Private communication with T. Pluta. The analytic (hyper)polarizability calculations have been carried out with the DALTON suite of programs, release 2.0(2004), htto:/www.kjemi.uio.no/software/Dalton/.
  • 53
    • 58149162372 scopus 로고    scopus 로고
    • Among the various MP orders, MP2 yields the largest values and this is observed for all clusters of this study. For instance, the mean dipole hyperpolarizability of Al2P2 at MP3 (third order MP, is 148 x 103 au, while at MP4-DQ (doubles and quantruples substitutions) and MP4-SDQ (singles doubles and quantruples substitutions) the obtained values are 142.8 ×103 and 145.8 x 103 au. respectively. On the other hand, after the inclusion of triple substitutions forming the complete MP4-SDTQ method the mean (hyper)polarizability rises again to 164.5 x 103 au. A similar effect is observed in the case of the two CC methods where the inclusion of the pertubational estimate of the connected triple excitations increases considerably the second hyperpolarizability with respect to the CCSD approximation, which includes all single and double excitations
    • 3 au. A similar effect is observed in the case of the two CC methods where the inclusion of the pertubational estimate of the connected triple excitations increases considerably the second hyperpolarizability with respect to the CCSD approximation, which includes all single and double excitations.
  • 54
    • 58149143791 scopus 로고    scopus 로고
    • This can be related also to the atomic polarizabilities of P and As since they can be expressed as well in units and provide a reliable estimate of the relative atomic
    • This can be related also to the atomic polarizabilities of P and As since they can be expressed as well in volume units and provide a reliable estimate of the relative atomic volumes.
  • 56
    • 58149162371 scopus 로고    scopus 로고
    • It is important to stress that geometry optimizations and frequency calculation of the D3h, configurations for Ga3As 3 and InAs3 at the B3LYP level of theory yield two soft degenerated imaginary frequencies of about 40-30 cm-1. This points out that, at this level of theory, a lower symmetry (Cs or C1) configuration should be more stable than the D 3h structures. Nonetheless, if one follows the distortions, implied by the observed imaginary harmonic frequencies, the resulting structures are not very far from the planar configuration, which appears as a true minimum at the MP2 level of theory. This discrepancy between DFT and MP2 methods is quite common in small clusters of relatively high symmetry and in most of the cases is caused by the ability of the method one uses during a routine geometry optimization to treat possible pseudo-Jahn-Teller effects see ref 52 and references t
    • s lower in energy for the aluminum phosphide trimer. On the other hand the B3LYP approach yields the inverse relative stability (see refs 18 and 28). We have observed a similar method performance for the rest of the phosphide clusters as well. This is a very interesting theoretical problem that, however, is beyond the scope of this paper.
  • 58
    • 58149165688 scopus 로고    scopus 로고
    • In the present case the term charge transfer refers to the charge (electrons) transferred from the electropositive Al, Ga, and In atoms to the electronegative P and As after the formation of each cluster. A qualitative estimation of the relative amount of this charge can be obtained for each cluster simply by comparing the natural charges of their atoms. Accordingly, large natural atomic charges (as in the case of the trimers of D3h symmetry) imply strong electron charge transfer among the electronegative and electropositive atoms (for more details see ref 28, It is important to be noted that the discussed charge transfer is not related to the field induced charge transfer, which has been connected to the first hyperpolarizability especially in the case of organic push pull molecules, This property is also of significant importance; however, it is not clear yet how the bonding features of a given cluster influence its magnitude. Work is in progress
    • 3h symmetry) imply strong electron charge transfer among the electronegative and electropositive atoms (for more details see ref 28). It is important to be noted that the discussed "charge transfer" is not related to the field induced charge transfer, which has been connected to the first hyperpolarizability (especially in the case of organic push pull molecules). This property is also of significant importance; however, it is not clear yet how the bonding features of a given cluster influence its magnitude. Work is in progress to indentify possible correlations between specific cluster features and the first hyperpolarizability. The considered cluster characteristics are the cluster size, the bonding, and the cluster shape.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.