-
4
-
-
0032680184
-
Constraintbased rule mining in large, dense database
-
R. Bayardo, R. Agrawal, and D. Gunopulos. Constraintbased rule mining in large, dense database. In Proc. of the 15th Int'l Conf. on Data Engineering, pages 188-197, 1999.
-
(1999)
Proc. of the 15th Int'l Conf. on Data Engineering
, pp. 188-197
-
-
Bayardo, R.1
Agrawal, R.2
Gunopulos, D.3
-
5
-
-
0031161999
-
Beyond market baskets: Generalizing association rules to correlations
-
S. Brin, R. Motwani, and C. Silverstein. Beyond market baskets: Generalizing association rules to correlations. SIGMOD Record (ACM Special Interest Group on Management of Data), 26(2):265, 1997.
-
(1997)
SIGMOD Record (ACM Special Interest Group on Management of Data)
, vol.26
, Issue.2
, pp. 265
-
-
Brin, S.1
Motwani, R.2
Silverstein, C.3
-
6
-
-
0031162961
-
Dynamic itemset counting and implication rules for market basket data
-
NY, USA. ACM Press
-
S. Brin, R. Motwani, J. D. Ullman, and S. Tsur. Dynamic itemset counting and implication rules for market basket data. In Proceedings, ACM SIGMOD International Conference on Management of Data: SIGMOD 1997: May 13-15, 1997, Tucson, Arizona, USA, volume 26(2), pages 255-264, NY, USA, 1997. ACM Press.
-
(1997)
Proceedings, ACM SIGMOD International Conference on Management of Data: SIGMOD 1997: May 13-15, 1997, Tucson, Arizona, USA
, vol.26
, Issue.2
, pp. 255-264
-
-
Brin, S.1
Motwani, R.2
Ullman, J.D.3
Tsur, S.4
-
7
-
-
85015191605
-
Rule induction with CN2: Some recent improvements
-
P. Clark and R. Boswell. Rule induction with CN2: Some recent improvements. In Machine Learning - EWSL-91, pages 151-163, 1991.
-
(1991)
Machine Learning - EWSL-91
, pp. 151-163
-
-
Clark, P.1
Boswell, R.2
-
8
-
-
0033877655
-
Finding interesting associations without support pruning
-
Washington - Brussels - Tokyo, IEEE
-
E. Cohen, M. Datar, S. Fujiwara, A. Gionis, P. Indyk, R. Motwani, J. Ullman, and C. Yang. Finding interesting associations without support pruning. In 16th International Conference on Data Engineering (ICDE' 00), pages 489-500, Washington - Brussels - Tokyo, 2000. IEEE.
-
(2000)
16th International Conference on Data Engineering (ICDE' 00)
, pp. 489-500
-
-
Cohen, E.1
Datar, M.2
Fujiwara, S.3
Gionis, A.4
Indyk, P.5
Motwani, R.6
Ullman, J.7
Yang, C.8
-
10
-
-
0030156999
-
Data mining using two-dimensional optimized association rules: Scheme, algorithms, and visualization
-
New York, ACM Press
-
T. Fukuda, Y. Morimoto, S. Morishita, and T. Tokuyama. Data mining using two-dimensional optimized association rules: scheme, algorithms, and visualization. In Proceedings of the 1996 ACM SIGMOD International Conference on Management of Data, Montreal, Quebec, Canada, June 4-6, 1996, pages 13-23, New York, 1996. ACM Press.
-
(1996)
Proceedings of the 1996 ACM SIGMOD International Conference on Management of Data, Montreal, Quebec, Canada, June 4-6, 1996
, pp. 13-23
-
-
Fukuda, T.1
Morimoto, Y.2
Morishita, S.3
Tokuyama, T.4
-
13
-
-
0036722344
-
Mining the optimal class association rule set
-
DOI 10.1016/S0950-7051(02)00024-2, PII S0950705102000242
-
J. Li, H. Shen, and R. Topor. Mining the optimal class association rule set. Knowledge-Based System, 15(7):399-405, 2002. (Pubitemid 34614259)
-
(2002)
Knowledge-Based Systems
, vol.15
, Issue.7
, pp. 399-405
-
-
Li, J.1
Shen, H.2
Topor, R.3
-
15
-
-
11544280708
-
The AQ15 inductive learning system: An overview and experiments
-
Université de Paris-Sud
-
R. Michalski, I. Mozetic, J. Hong, and N. Lavrac. The AQ15 inductive learning system: an overview and experiments. In Proceedings of IMAL 1986, Orsay, 1986. Université de Paris-Sud.
-
Proceedings of IMAL 1986, Orsay, 1986
-
-
Michalski, R.1
Mozetic, I.2
Hong, J.3
Lavrac, N.4
-
18
-
-
0002877253
-
Discovery, analysis and presentation of strong rules
-
G. Piatetsky-Shapiro, editor, AAAI Press / The MIT Press, Menlo Park, California
-
G. Piatetsky-Shapiro. Discovery, analysis and presentation of strong rules. In G. Piatetsky-Shapiro, editor, Knowledge Discovery in Databases, pages 229-248. AAAI Press / The MIT Press, Menlo Park, California, 1991.
-
(1991)
Knowledge Discovery in Databases
, pp. 229-248
-
-
Piatetsky-Shapiro, G.1
-
19
-
-
0005810893
-
Turbo-charging vertical mining of large databases
-
Proceedings of the ACM SIGMOD International Conference on Management of Data (SIGMOD-99), Dallas, Texas, ACM Press
-
P. Shenoy, J. R. Haritsa, S. Sudarshan, G. Bhalotia, M. Bawa, and D. Shah. Turbo-charging vertical mining of large databases. In Proceedings of the ACM SIGMOD International Conference on Management of Data (SIGMOD-99), ACM SIGMOD Record 29(2), pages 22-33, Dallas, Texas, 1999. ACM Press.
-
(1999)
ACM SIGMOD Record
, vol.29
, Issue.2
, pp. 22-33
-
-
Shenoy, P.1
Haritsa, J.R.2
Sudarshan, S.3
Bhalotia, G.4
Bawa, M.5
Shah, D.6
-
20
-
-
0242625291
-
Selecting the right interestingness measure for association patterns
-
Edmonton, Canada, ACM press
-
P. Tan, V. Kumar, and J. Srivastava. Selecting the right interestingness measure for association patterns. In Proceedings of the eighth ACMKDD international conference on knowledge discovery and data mining, pages 32 - 41, Edmonton, Canada, 2002. ACM press.
-
(2002)
Proceedings of the Eighth ACMKDD International Conference on Knowledge Discovery and Data Mining
, pp. 32-41
-
-
Tan, P.1
Kumar, V.2
Srivastava, J.3
-
21
-
-
0000835392
-
OPUS: An efficient admissible algorithm for unordered search
-
G. I. Webb. OPUS: An efficient admissible algorithm for unordered search. In Journal of Artificial Intelligence Research, volume 3, pages 431-465, 1995.
-
(1995)
Journal of Artificial Intelligence Research
, vol.3
, pp. 431-465
-
-
Webb, G.I.1
-
24
-
-
85138646379
-
New algorithms for fast discovery of association rules
-
AAAI Press
-
M. J. Zaki, S. Parthasarathy, M. Ogihara, and W. Li. New algorithms for fast discovery of association rules. In Proceedings of the Third International Conference on Knowledge Discovery and Data Mining (KDD-97), page 283. AAAI Press, 1997.
-
(1997)
Proceedings of the Third International Conference on Knowledge Discovery and Data Mining (KDD-97)
, pp. 283
-
-
Zaki, M.J.1
Parthasarathy, S.2
Ogihara, M.3
Li, W.4
|