메뉴 건너뛰기




Volumn , Issue , 2008, Pages 75-82

AdaBoost-based multiple SVM-RFE for classification of mammograms in DDSM

Author keywords

[No Author keywords available]

Indexed keywords

BIOINFORMATICS; COMPUTER AIDED DIAGNOSIS; DIAGNOSTIC RADIOGRAPHY; LEARNING ALGORITHMS; LEARNING SYSTEMS; MEDICAL IMAGING; SUPPORT VECTOR MACHINES; TECHNICAL PRESENTATIONS;

EID: 58049159240     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/BIBMW.2008.4686212     Document Type: Conference Paper
Times cited : (13)

References (24)
  • 1
    • 58049137007 scopus 로고    scopus 로고
    • Cancer Facts and Figures. American Cancer Society, 2007.
    • Cancer Facts and Figures. American Cancer Society, 2007.
  • 4
    • 0042876899 scopus 로고    scopus 로고
    • Computer-aided classification of breast microcalcification clusters: Merging of features from image processing and radiologists. Medical Imaging 2003, Proc
    • J.Y. Lo et al., Computer-aided classification of breast microcalcification clusters: Merging of features from image processing and radiologists. Medical Imaging 2003, Proc. SPIE vol.5032:1605-7422, 2003.
    • (2003) SPIE , vol.5032 , pp. 1605-7422
    • Lo, J.Y.1
  • 5
    • 19044383038 scopus 로고    scopus 로고
    • A Study on Several Machine-Learning Methods for Classification of Malignant and Benign Clustered Microcalcifications
    • L. Wei et al., A Study on Several Machine-Learning Methods for Classification of Malignant and Benign Clustered Microcalcifications. IEEE Trans. on Medical Imaging, 24:371-380, 2005.
    • (2005) IEEE Trans. on Medical Imaging , vol.24 , pp. 371-380
    • Wei, L.1
  • 6
    • 33750702140 scopus 로고    scopus 로고
    • Characterization of Breast Abnormality Patterns in Digital Mammograms Using Auto-associator Neural Network
    • Intl. Conf. Image Processing
    • R. Panchal and Brijesh Verma, Characterization of Breast Abnormality Patterns in Digital Mammograms Using Auto-associator Neural Network. Intl. Conf. Image Processing 2006, Part III, LNCS 4234:127-136, 2006.
    • (2006) LNCS , vol.4234 , Issue.PART III , pp. 127-136
    • Panchal, R.1    Verma, B.2
  • 7
    • 0037002322 scopus 로고    scopus 로고
    • A Support Vector Machine Approach for Detection of Microcalcifications
    • I. El-Naqa et al., A Support Vector Machine Approach for Detection of Microcalcifications, IEEE Trans. on Medical Imaging, 21(12): 1552-1563, 2002.
    • (2002) IEEE Trans. on Medical Imaging , vol.21 , Issue.12 , pp. 1552-1563
    • El-Naqa, I.1
  • 8
    • 0041874900 scopus 로고    scopus 로고
    • Application of Support Vector Machines to breast cancer screening using mammogram and clinical history data
    • W. Land Jr. et al., Application of Support Vector Machines to breast cancer screening using mammogram and clinical history data. SPIE Medical Imaging, 2003.
    • (2003) SPIE Medical Imaging
    • Land Jr., W.1
  • 9
    • 33746354038 scopus 로고    scopus 로고
    • Computerized classification can reduce unnecessary biopsies in Bi-Rads category 4A lesions
    • L. Isaac et al., Computerized classification can reduce unnecessary biopsies in Bi-Rads category 4A lesions. International Workshop on Digital Mammography, 76-83, 2006.
    • (2006) International Workshop on Digital Mammography , pp. 76-83
    • Isaac, L.1
  • 10
    • 0034871408 scopus 로고    scopus 로고
    • Potential of computer-aided diagnosis to reduce variability in radiologists' interpretations of mammograms depicting microcalcifications
    • Y. Jiang et al., Potential of computer-aided diagnosis to reduce variability in radiologists' interpretations of mammograms depicting microcalcifications. Radiology, 220:787-794, 2001.
    • (2001) Radiology , vol.220 , pp. 787-794
    • Jiang, Y.1
  • 11
    • 58049178369 scopus 로고    scopus 로고
    • Computer-Aided Diagnosis in breast imaging: Where do we go after detection?
    • Eds. J.S. Suri and R.M. Rangayyan, SPIE Press, pp
    • J.Y. Lo et al., Computer-Aided Diagnosis in breast imaging: Where do we go after detection? in Recent Advances in Breast Imaging, Mammography and Computer-Aided Diagnosis of Breast Cancer, Eds. J.S. Suri and R.M. Rangayyan, SPIE Press, pp.871-900, 2006.
    • (2006) Recent Advances in Breast Imaging, Mammography and Computer-Aided Diagnosis of Breast Cancer , pp. 871-900
    • Lo, J.Y.1
  • 12
    • 26644466101 scopus 로고    scopus 로고
    • Multiple SVM-RFE for Gene Selection in Cancer Classification With Expression Data
    • K. Duan et al., Multiple SVM-RFE for Gene Selection in Cancer Classification With Expression Data, IEEE Trans. Nanobioscience 4(3):228-234, 2005.
    • (2005) IEEE Trans. Nanobioscience , vol.4 , Issue.3 , pp. 228-234
    • Duan, K.1
  • 13
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using SVM
    • I. Guyon et al., Gene selection for cancer classification using SVM. Machine Learning, 46:389-422, 2002.
    • (2002) Machine Learning , vol.46 , pp. 389-422
    • Guyon, I.1
  • 14
    • 0002734346 scopus 로고    scopus 로고
    • The Digital Database for Screening Mammography
    • Eds. M.I. Yaffe, Medical Physics Publishing
    • M. Heath et al., The Digital Database for Screening Mammography. in Proc. of the 5th Intl. Workshop on Digital Mammography, Eds. M.I. Yaffe, Medical Physics Publishing, 212-218, 2001.
    • (2001) Proc. of the 5th Intl. Workshop on Digital Mammography , pp. 212-218
    • Heath, M.1
  • 15
    • 0002344794 scopus 로고
    • Bootstrap Methods: Another Look at the Jackknife
    • B. Efron, Bootstrap Methods: Another Look at the Jackknife. The Annals of Statistics 7(1):1-26, 1979.
    • (1979) The Annals of Statistics , vol.7 , Issue.1 , pp. 1-26
    • Efron, B.1
  • 16
    • 0031211090 scopus 로고    scopus 로고
    • A decsion theoretic generalization of online learning and an application to boosting
    • Y. Freund and R. Schapire, A decsion theoretic generalization of online learning and an application to boosting. Jnl. Comput. System Sci. 55(1):119-139, 1997.
    • (1997) Jnl. Comput. System Sci , vol.55 , Issue.1 , pp. 119-139
    • Freund, Y.1    Schapire, R.2
  • 17
    • 0032645080 scopus 로고    scopus 로고
    • An empirical comparison of voting classification algorithms: Bagging, Boosting, and Variants
    • E. Bauer et al., An empirical comparison of voting classification algorithms: Bagging, Boosting, and Variants. Machine Learning 36:105-139, 1999.
    • (1999) Machine Learning , vol.36 , pp. 105-139
    • Bauer, E.1
  • 19
    • 58049148002 scopus 로고    scopus 로고
    • H. Kim et al., Pattern Classification Using Support Vector Machine Ensemble. Pattern Recognition, 02:1051-4651, 2002.
    • H. Kim et al., Pattern Classification Using Support Vector Machine Ensemble. Pattern Recognition, 02:1051-4651, 2002.
  • 20
    • 58049140706 scopus 로고    scopus 로고
    • Breast Imaging Reporting and Data System (BIRADS). American College of Radiology, Reston, VA, 1998.
    • Breast Imaging Reporting and Data System (BIRADS). American College of Radiology, Reston, VA, 1998.
  • 21
    • 0033005259 scopus 로고    scopus 로고
    • Bi-Rads categorization as a predictor of malignancy
    • S.G. Orel et al., Bi-Rads categorization as a predictor of malignancy. Radiology, 211:845-850, 1999.
    • (1999) Radiology , vol.211 , pp. 845-850
    • Orel, S.G.1
  • 22
    • 17444397485 scopus 로고    scopus 로고
    • Neural vs. statistical classifier in conjunction with genetic algorithm based feature selection
    • P. Zhang et al., Neural vs. statistical classifier in conjunction with genetic algorithm based feature selection. Pattern Recognition Letters 26(7):909-919, 2005.
    • (2005) Pattern Recognition Letters , vol.26 , Issue.7 , pp. 909-919
    • Zhang, P.1
  • 23
    • 0345688978 scopus 로고    scopus 로고
    • Determination of the spread parameter in the Gaussian kernel for classification and regression
    • W. Wang et al., Determination of the spread parameter in the Gaussian kernel for classification and regression. Neurocomputing 55(3):643-663, 2003.
    • (2003) Neurocomputing , vol.55 , Issue.3 , pp. 643-663
    • Wang, W.1
  • 24
    • 29144499905 scopus 로고    scopus 로고
    • Working set selection using second order information for training SVM
    • R.-E. Fan, P.-H. Chen and C.-J. Lin, Working set selection using second order information for training SVM. Journal of Machine Learning Research 6:1889-1918, 2005.
    • (2005) Journal of Machine Learning Research , vol.6 , pp. 1889-1918
    • Fan, R.-E.1    Chen, P.-H.2    Lin, C.-J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.