-
1
-
-
58049137007
-
-
Cancer Facts and Figures. American Cancer Society, 2007.
-
Cancer Facts and Figures. American Cancer Society, 2007.
-
-
-
-
4
-
-
0042876899
-
Computer-aided classification of breast microcalcification clusters: Merging of features from image processing and radiologists. Medical Imaging 2003, Proc
-
J.Y. Lo et al., Computer-aided classification of breast microcalcification clusters: Merging of features from image processing and radiologists. Medical Imaging 2003, Proc. SPIE vol.5032:1605-7422, 2003.
-
(2003)
SPIE
, vol.5032
, pp. 1605-7422
-
-
Lo, J.Y.1
-
5
-
-
19044383038
-
A Study on Several Machine-Learning Methods for Classification of Malignant and Benign Clustered Microcalcifications
-
L. Wei et al., A Study on Several Machine-Learning Methods for Classification of Malignant and Benign Clustered Microcalcifications. IEEE Trans. on Medical Imaging, 24:371-380, 2005.
-
(2005)
IEEE Trans. on Medical Imaging
, vol.24
, pp. 371-380
-
-
Wei, L.1
-
6
-
-
33750702140
-
Characterization of Breast Abnormality Patterns in Digital Mammograms Using Auto-associator Neural Network
-
Intl. Conf. Image Processing
-
R. Panchal and Brijesh Verma, Characterization of Breast Abnormality Patterns in Digital Mammograms Using Auto-associator Neural Network. Intl. Conf. Image Processing 2006, Part III, LNCS 4234:127-136, 2006.
-
(2006)
LNCS
, vol.4234
, Issue.PART III
, pp. 127-136
-
-
Panchal, R.1
Verma, B.2
-
7
-
-
0037002322
-
A Support Vector Machine Approach for Detection of Microcalcifications
-
I. El-Naqa et al., A Support Vector Machine Approach for Detection of Microcalcifications, IEEE Trans. on Medical Imaging, 21(12): 1552-1563, 2002.
-
(2002)
IEEE Trans. on Medical Imaging
, vol.21
, Issue.12
, pp. 1552-1563
-
-
El-Naqa, I.1
-
8
-
-
0041874900
-
Application of Support Vector Machines to breast cancer screening using mammogram and clinical history data
-
W. Land Jr. et al., Application of Support Vector Machines to breast cancer screening using mammogram and clinical history data. SPIE Medical Imaging, 2003.
-
(2003)
SPIE Medical Imaging
-
-
Land Jr., W.1
-
9
-
-
33746354038
-
Computerized classification can reduce unnecessary biopsies in Bi-Rads category 4A lesions
-
L. Isaac et al., Computerized classification can reduce unnecessary biopsies in Bi-Rads category 4A lesions. International Workshop on Digital Mammography, 76-83, 2006.
-
(2006)
International Workshop on Digital Mammography
, pp. 76-83
-
-
Isaac, L.1
-
10
-
-
0034871408
-
Potential of computer-aided diagnosis to reduce variability in radiologists' interpretations of mammograms depicting microcalcifications
-
Y. Jiang et al., Potential of computer-aided diagnosis to reduce variability in radiologists' interpretations of mammograms depicting microcalcifications. Radiology, 220:787-794, 2001.
-
(2001)
Radiology
, vol.220
, pp. 787-794
-
-
Jiang, Y.1
-
11
-
-
58049178369
-
Computer-Aided Diagnosis in breast imaging: Where do we go after detection?
-
Eds. J.S. Suri and R.M. Rangayyan, SPIE Press, pp
-
J.Y. Lo et al., Computer-Aided Diagnosis in breast imaging: Where do we go after detection? in Recent Advances in Breast Imaging, Mammography and Computer-Aided Diagnosis of Breast Cancer, Eds. J.S. Suri and R.M. Rangayyan, SPIE Press, pp.871-900, 2006.
-
(2006)
Recent Advances in Breast Imaging, Mammography and Computer-Aided Diagnosis of Breast Cancer
, pp. 871-900
-
-
Lo, J.Y.1
-
12
-
-
26644466101
-
Multiple SVM-RFE for Gene Selection in Cancer Classification With Expression Data
-
K. Duan et al., Multiple SVM-RFE for Gene Selection in Cancer Classification With Expression Data, IEEE Trans. Nanobioscience 4(3):228-234, 2005.
-
(2005)
IEEE Trans. Nanobioscience
, vol.4
, Issue.3
, pp. 228-234
-
-
Duan, K.1
-
13
-
-
0036161259
-
Gene selection for cancer classification using SVM
-
I. Guyon et al., Gene selection for cancer classification using SVM. Machine Learning, 46:389-422, 2002.
-
(2002)
Machine Learning
, vol.46
, pp. 389-422
-
-
Guyon, I.1
-
14
-
-
0002734346
-
The Digital Database for Screening Mammography
-
Eds. M.I. Yaffe, Medical Physics Publishing
-
M. Heath et al., The Digital Database for Screening Mammography. in Proc. of the 5th Intl. Workshop on Digital Mammography, Eds. M.I. Yaffe, Medical Physics Publishing, 212-218, 2001.
-
(2001)
Proc. of the 5th Intl. Workshop on Digital Mammography
, pp. 212-218
-
-
Heath, M.1
-
15
-
-
0002344794
-
Bootstrap Methods: Another Look at the Jackknife
-
B. Efron, Bootstrap Methods: Another Look at the Jackknife. The Annals of Statistics 7(1):1-26, 1979.
-
(1979)
The Annals of Statistics
, vol.7
, Issue.1
, pp. 1-26
-
-
Efron, B.1
-
16
-
-
0031211090
-
A decsion theoretic generalization of online learning and an application to boosting
-
Y. Freund and R. Schapire, A decsion theoretic generalization of online learning and an application to boosting. Jnl. Comput. System Sci. 55(1):119-139, 1997.
-
(1997)
Jnl. Comput. System Sci
, vol.55
, Issue.1
, pp. 119-139
-
-
Freund, Y.1
Schapire, R.2
-
17
-
-
0032645080
-
An empirical comparison of voting classification algorithms: Bagging, Boosting, and Variants
-
E. Bauer et al., An empirical comparison of voting classification algorithms: Bagging, Boosting, and Variants. Machine Learning 36:105-139, 1999.
-
(1999)
Machine Learning
, vol.36
, pp. 105-139
-
-
Bauer, E.1
-
19
-
-
58049148002
-
-
H. Kim et al., Pattern Classification Using Support Vector Machine Ensemble. Pattern Recognition, 02:1051-4651, 2002.
-
H. Kim et al., Pattern Classification Using Support Vector Machine Ensemble. Pattern Recognition, 02:1051-4651, 2002.
-
-
-
-
20
-
-
58049140706
-
-
Breast Imaging Reporting and Data System (BIRADS). American College of Radiology, Reston, VA, 1998.
-
Breast Imaging Reporting and Data System (BIRADS). American College of Radiology, Reston, VA, 1998.
-
-
-
-
21
-
-
0033005259
-
Bi-Rads categorization as a predictor of malignancy
-
S.G. Orel et al., Bi-Rads categorization as a predictor of malignancy. Radiology, 211:845-850, 1999.
-
(1999)
Radiology
, vol.211
, pp. 845-850
-
-
Orel, S.G.1
-
22
-
-
17444397485
-
Neural vs. statistical classifier in conjunction with genetic algorithm based feature selection
-
P. Zhang et al., Neural vs. statistical classifier in conjunction with genetic algorithm based feature selection. Pattern Recognition Letters 26(7):909-919, 2005.
-
(2005)
Pattern Recognition Letters
, vol.26
, Issue.7
, pp. 909-919
-
-
Zhang, P.1
-
23
-
-
0345688978
-
Determination of the spread parameter in the Gaussian kernel for classification and regression
-
W. Wang et al., Determination of the spread parameter in the Gaussian kernel for classification and regression. Neurocomputing 55(3):643-663, 2003.
-
(2003)
Neurocomputing
, vol.55
, Issue.3
, pp. 643-663
-
-
Wang, W.1
-
24
-
-
29144499905
-
Working set selection using second order information for training SVM
-
R.-E. Fan, P.-H. Chen and C.-J. Lin, Working set selection using second order information for training SVM. Journal of Machine Learning Research 6:1889-1918, 2005.
-
(2005)
Journal of Machine Learning Research
, vol.6
, pp. 1889-1918
-
-
Fan, R.-E.1
Chen, P.-H.2
Lin, C.-J.3
|