-
1
-
-
58049125432
-
-
Carle, S. F, 1999, Transition probability geostatistical software, version 2.1, 76 pp, Univ. of Calif, Davis, Calif
-
Carle, S. F. (1999), Transition probability geostatistical software, version 2.1, 76 pp., Univ. of Calif., Davis, Calif.
-
-
-
-
2
-
-
2042505537
-
Transport in heterogeneous sediments with multimodal conductivity and hierarchical organization across scales
-
Dai, Z., R. W. Ritzi, C. Huang, D. F. Dominic, and Y. N. Rubin (2004), Transport in heterogeneous sediments with multimodal conductivity and hierarchical organization across scales, J. Hydrol., 294(1-3), 68-86.
-
(2004)
J. Hydrol
, vol.294
, Issue.1-3
, pp. 68-86
-
-
Dai, Z.1
Ritzi, R.W.2
Huang, C.3
Dominic, D.F.4
Rubin, Y.N.5
-
3
-
-
37349098320
-
Representing aquifer architecture in macrodispersivity models with an analytical solution of the transition probability matrix
-
doi:10.1029/2007GL031608
-
Dai, Z., A. Wolfsberg, Z. Lu, and R. Ritzi Jr. (2007), Representing aquifer architecture in macrodispersivity models with an analytical solution of the transition probability matrix, Geophys. Res. Lett., 34, L20406, doi:10.1029/2007GL031608.
-
(2007)
Geophys. Res. Lett
, vol.34
-
-
Dai, Z.1
Wolfsberg, A.2
Lu, Z.3
Ritzi Jr., R.4
-
4
-
-
58049093506
-
-
M.S. thesis, Wright State Univ, Dayton, Ohio
-
Guin, A. (2005), Linking indicator geostatistics to percolation theory in the analysis of spatial continuity of permeable sediments, M.S. thesis, Wright State Univ., Dayton, Ohio.
-
(2005)
Linking indicator geostatistics to percolation theory in the analysis of spatial continuity of permeable sediments
-
-
Guin, A.1
-
5
-
-
27244444393
-
Finite-size scaling analysis of percolation in 3-D correlated binary Markov chain random fields
-
Harter, T. (2005), Finite-size scaling analysis of percolation in 3-D correlated binary Markov chain random fields, Phys. Rev. E, 72(2), 026120.
-
(2005)
Phys. Rev. E
, vol.72
, Issue.2
, pp. 026120
-
-
Harter, T.1
-
7
-
-
34250652871
-
Geologic heterogeneity and a comparison of two geostatistical models: Sequential Gaussian and transition probability-based geostatistical simulation
-
doi:10.1016/j.advwatres.2007.03.005
-
Lee, S.-Y., S. F. Carle, and G. E. Fogg (2007), Geologic heterogeneity and a comparison of two geostatistical models: Sequential Gaussian and transition probability-based geostatistical simulation, Adv. Water Res., 30, 1914-1932, doi:10.1016/j.advwatres.2007.03.005.
-
(2007)
Adv. Water Res
, vol.30
, pp. 1914-1932
-
-
Lee, S.-Y.1
Carle, S.F.2
Fogg, G.E.3
-
8
-
-
4544335116
-
Limits of applicability of the advection-dispersion model in aquifers containing connected high-conductivity channels
-
doi:10.1029/2003WR002735
-
Liu, G., C. Zheng, and S. M. Gorelick (2004), Limits of applicability of the advection-dispersion model in aquifers containing connected high-conductivity channels, Water Resour. Res., 40, W08308, doi:10.1029/2003WR002735.
-
(2004)
Water Resour. Res
, vol.40
-
-
Liu, G.1
Zheng, C.2
Gorelick, S.M.3
-
9
-
-
0036822719
-
On stochastic modeling of flow in multimodal heterogeneous formations
-
doi:10.1029/2001WR001026
-
Lu, Z., and D. Zhang (2002), On stochastic modeling of flow in multimodal heterogeneous formations, Water Resour. Res., 38(10), 1190, doi:10.1029/2001WR001026.
-
(2002)
Water Resour. Res
, vol.38
, Issue.10
, pp. 1190
-
-
Lu, Z.1
Zhang, D.2
-
10
-
-
58049085475
-
-
McKenna, S., and G. Smith (2004), Sensitivity of groundwater flow patterns to parameterization of object-based fluvial aquifer models in aquifer characterization, in Aquifer Characterization, edited by J. S. Bridge, and D. W. Hyndman, Spec. Publ. SEPM Soc. Sediment. Geol., 80, 29-41.
-
McKenna, S., and G. Smith (2004), Sensitivity of groundwater flow patterns to parameterization of object-based fluvial aquifer models in aquifer characterization, in Aquifer Characterization, edited by J. S. Bridge, and D. W. Hyndman, Spec. Publ. SEPM Soc. Sediment. Geol., 80, 29-41.
-
-
-
-
11
-
-
0033744622
-
Behavior of indicator semivariograms and transition probabilities in relation to the variance in lengths of hydrofacies
-
Ritzi, R. W. (2000), Behavior of indicator semivariograms and transition probabilities in relation to the variance in lengths of hydrofacies, Water Resour. Res., 36(11), 3375-3381.
-
(2000)
Water Resour. Res
, vol.36
, Issue.11
, pp. 3375-3381
-
-
Ritzi, R.W.1
-
12
-
-
0025199272
-
The influence of grid discretization on the percolation probability within discrete random-fields
-
Silliman, S. E. (1990), The influence of grid discretization on the percolation probability within discrete random-fields, J. Hydrogeol., 113(1-4), 177-191.
-
(1990)
J. Hydrogeol
, vol.113
, Issue.1-4
, pp. 177-191
-
-
Silliman, S.E.1
-
13
-
-
0024219806
-
Stochastic analysis of paths of high hydraulic conductivity in porous media
-
Silliman, S. E., and A. L. Wright (1988), Stochastic analysis of paths of high hydraulic conductivity in porous media, Water Resour. Res., 24(11), 1901-1910.
-
(1988)
Water Resour. Res
, vol.24
, Issue.11
, pp. 1901-1910
-
-
Silliman, S.E.1
Wright, A.L.2
-
14
-
-
0003610874
-
-
181 pp, Taylor and Francis, Philadelphia, Pa
-
Stauffer, D., and A. Aharony (1994), Introduction of Percolation Theory, 181 pp., Taylor and Francis, Philadelphia, Pa.
-
(1994)
Introduction of Percolation Theory
-
-
Stauffer, D.1
Aharony, A.2
-
15
-
-
58049087811
-
Comparison of transport simulations and equivalent dispersion coefficients in heterogeneous media generated by different numerical methods: A genesis model and a simple geostatistical sequential Gaussian simulation
-
Teles, V., F. Delay, and G. deMarshily (2006), Comparison of transport simulations and equivalent dispersion coefficients in heterogeneous media generated by different numerical methods: A genesis model and a simple geostatistical sequential Gaussian simulation, Geosphere, 2(5), 275-286.
-
(2006)
Geosphere
, vol.2
, Issue.5
, pp. 275-286
-
-
Teles, V.1
Delay, F.2
deMarshily, G.3
-
16
-
-
0034079131
-
A method to estimate length distribution from outcrop data
-
White, C. D., and B. J. Willis (2000), A method to estimate length distribution from outcrop data, Math. Geol., 32(4), 389-419.
-
(2000)
Math. Geol
, vol.32
, Issue.4
, pp. 389-419
-
-
White, C.D.1
Willis, B.J.2
|