-
1
-
-
77956665210
-
-
For a review, see, e.g., edited by H. Bouchiat, S. Guéron, Elsevier, New York, J. Dalibard (G. Montambaux, and Y. Gefen
-
For a review, see, e.g., L. I. Glazman and M. Pustilnik, in Nanophysics: Coherence and Transport, edited by, H. Bouchiat, S. Guéron, Y. Gefen, G. Montambaux and, J. Dalibard, (Elsevier, New York, 2005), pp. 427-478.
-
(2005)
Nanophysics: Coherence and Transport
, pp. 427-478
-
-
Glazman, L.I.1
Pustilnik, M.2
-
2
-
-
0030528685
-
-
10.1103/RevModPhys.68.13
-
A. Georges, G. Kotliar, W. Krauth, and M. J. Rozenberg, Rev. Mod. Phys. 68, 13 (1996). 10.1103/RevModPhys.68.13
-
(1996)
Rev. Mod. Phys.
, vol.68
, pp. 13
-
-
Georges, A.1
Kotliar, G.2
Krauth, W.3
Rozenberg, M.J.4
-
5
-
-
1542411060
-
-
10.1016/0550-3213(91)90109-B;
-
I. Affleck and A. W. W. Ludwig, Nucl. Phys. B 352, 849 (1991) 10.1016/0550-3213(91)90109-B
-
(1991)
Nucl. Phys. B
, vol.352
, pp. 849
-
-
Affleck, I.1
Ludwig, A.W.W.2
-
6
-
-
0011542920
-
-
10.1016/0550-3213(91)90419-X;
-
I. Affleck and A. W. W. Ludwig, Nucl. Phys. B 360, 641 (1991) 10.1016/0550-3213(91)90419-X
-
(1991)
Nucl. Phys. B
, vol.360
, pp. 641
-
-
Affleck, I.1
Ludwig, A.W.W.2
-
7
-
-
0000370561
-
-
10.1103/PhysRevB.45.7918
-
I. Affleck, A. W. W. Ludwig, H. B. Pang, and D. L. Cox, Phys. Rev. B 45, 7918 (1992). 10.1103/PhysRevB.45.7918
-
(1992)
Phys. Rev. B
, vol.45
, pp. 7918
-
-
Affleck, I.1
Ludwig, A.W.W.2
Pang, H.B.3
Cox, D.L.4
-
8
-
-
0001482232
-
-
10.1103/PhysRevB.46.10812
-
V. J. Emery and S. Kivelson, Phys. Rev. B 46, 10812 (1992). 10.1103/PhysRevB.46.10812
-
(1992)
Phys. Rev. B
, vol.46
, pp. 10812
-
-
Emery, V.J.1
Kivelson, S.2
-
12
-
-
35949034896
-
-
10.1103/RevModPhys.47.773;
-
K. G. Wilson, Rev. Mod. Phys. 47, 773 (1975) 10.1103/RevModPhys.47.773
-
(1975)
Rev. Mod. Phys.
, vol.47
, pp. 773
-
-
Wilson, K.G.1
-
13
-
-
42149117389
-
-
for a recent review of NRG, see 10.1103/RevModPhys.80.395
-
for a recent review of NRG, see R. Bulla, T. Costi, and T. Pruschke, Rev. Mod. Phys. 80, 395 (2008). 10.1103/RevModPhys.80.395
-
(2008)
Rev. Mod. Phys.
, vol.80
, pp. 395
-
-
Bulla, R.1
Costi, T.2
Pruschke, T.3
-
19
-
-
3442895828
-
-
10.1103/PhysRevLett.69.2863;
-
S. R. White, Phys. Rev. Lett. 69, 2863 (1992) 10.1103/PhysRevLett.69.2863
-
(1992)
Phys. Rev. Lett.
, vol.69
, pp. 2863
-
-
White, S.R.1
-
20
-
-
20044389808
-
-
10.1103/PhysRevB.48.10345
-
S. R. White, Phys. Rev. B 48, 10345 (1993). 10.1103/PhysRevB.48.10345
-
(1993)
Phys. Rev. B
, vol.48
, pp. 10345
-
-
White, S.R.1
-
21
-
-
0034246673
-
-
10.1103/PhysRevLett.85.1508
-
W. Hofstetter, Phys. Rev. Lett. 85, 1508 (2000). 10.1103/PhysRevLett.85. 1508
-
(2000)
Phys. Rev. Lett.
, vol.85
, pp. 1508
-
-
Hofstetter, W.1
-
22
-
-
28844489602
-
-
10.1103/PhysRevLett.95.196801
-
F. B. Anders and A. Schiller, Phys. Rev. Lett. 95, 196801 (2005). 10.1103/PhysRevLett.95.196801
-
(2005)
Phys. Rev. Lett.
, vol.95
, pp. 196801
-
-
Anders, F.B.1
Schiller, A.2
-
25
-
-
33144489173
-
-
10.1103/PhysRevB.73.035332
-
R. Žitko and J. Bonca, Phys. Rev. B 73, 035332 (2006). 10.1103/PhysRevB.73.035332
-
(2006)
Phys. Rev. B
, vol.73
, pp. 035332
-
-
Žitko, R.1
Bonca, J.2
-
27
-
-
23844520141
-
-
10.1103/RevModPhys.77.259
-
U. Schollwöck, Rev. Mod. Phys. 77, 259 (2005). 10.1103/RevModPhys. 77.259
-
(2005)
Rev. Mod. Phys.
, vol.77
, pp. 259
-
-
Schollwöck, U.1
-
28
-
-
58049106645
-
-
This code has open access and is accessible at the site
-
This code has open access and is accessible at the site http://www.phy.bme.hu/~dmnrg
-
-
-
-
29
-
-
58049115098
-
-
arXiv:0809.3143 (unpublished).
-
for a comprehensive manual, see O. Legeza, C. P. Moca, A. I. Toth, I. Weymann, and G. Zarand, arXiv:0809.3143 (unpublished).
-
-
-
Legeza, O.1
Moca, C.P.2
Toth, A.I.3
Weymann, I.4
Zarand, G.5
-
30
-
-
0032156044
-
-
10.1080/000187398243500
-
D. L. Cox and A. Zawadowski, Adv. Phys. 47, 599 (1998). 10.1080/000187398243500
-
(1998)
Adv. Phys.
, vol.47
, pp. 599
-
-
Cox, D.L.1
Zawadowski, A.2
-
31
-
-
33947127754
-
-
10.1038/nature05556
-
R. M. Potok, I. G. Rau, H. Shtrikman, Y. Oreg, and D. Goldhaber-Gordon, Nature (London) 446, 167 (2007). 10.1038/nature05556
-
(2007)
Nature (London)
, vol.446
, pp. 167
-
-
Potok, R.M.1
Rau, I.G.2
Shtrikman, H.3
Oreg, Y.4
Goldhaber-Gordon, D.5
-
32
-
-
58049110916
-
-
For groups like SU(3), having a more complicated Cartan subalgebra, every component of the internal labels Qi,z is composed of several quantum numbers.
-
For groups like SU(3), having a more complicated Cartan subalgebra, every component of the internal labels Qi,z is composed of several quantum numbers.
-
-
-
-
33
-
-
58049125333
-
-
One could also use a convention where the states of a given quantum number are distinguished by separate labels.
-
One could also use a convention where the states of a given quantum number are distinguished by separate labels.
-
-
-
-
35
-
-
58049091476
-
-
Some of the considerations presented here do not carry over for noncompact Lie groups.
-
Some of the considerations presented here do not carry over for noncompact Lie groups.
-
-
-
-
36
-
-
58049104818
-
-
Approximations also exist in the literature, e.g., the one in Ref. where comes only from the last iteration.
-
Approximations also exist in the literature, e.g., the one in Ref. where comes only from the last iteration.
-
-
-
-
37
-
-
35648973296
-
-
10.1103/PhysRevB.76.155318
-
A. I. Tóth, L. Borda, J. von Delft, and G. Zaránd, Phys. Rev. B 76, 155318 (2007). 10.1103/PhysRevB.76.155318
-
(2007)
Phys. Rev. B
, vol.76
, pp. 155318
-
-
Tóth, A.I.1
Borda, L.2
Von Delft, J.3
Zaránd, G.4
-
38
-
-
58049109392
-
-
One can show that ρ f0, α, = 1 2 ρ0 = 1 4 at the 2CK fixed point, in the large bandwidth limit. This follows from a theorem of Maldacena and Ludwig who proved that the single-particle S matrix vanishes at the 2CK fixed point, and from the relation between the Green's function of the local fermion f0,α, and the T matrix; see, e.g., Eq. (30) of Ref..
-
One can show that ρ f0, α, = 1 2 ρ0 = 1 4 at the 2CK fixed point, in the large bandwidth limit. This follows from a theorem of Maldacena and Ludwig who proved that the single-particle S matrix vanishes at the 2CK fixed point, and from the relation between the Green's function of the local fermion f0,α, and the T matrix; see, e.g., Eq. (30) of Ref..
-
-
-
-
39
-
-
55849141651
-
-
10.1103/PhysRevB.78.165130
-
A. I. Tóth and G. Zaránd, Phys. Rev. B 78, 165130 (2008). 10.1103/PhysRevB.78.165130
-
(2008)
Phys. Rev. B
, vol.78
, pp. 165130
-
-
Tóth, A.I.1
Zaránd, G.2
-
40
-
-
0035894356
-
-
10.1103/PhysRevB.64.241310
-
T. A. Costi, Phys. Rev. B 64, 241310 (R) (2001). 10.1103/PhysRevB.64. 241310
-
(2001)
Phys. Rev. B
, vol.64
, pp. 241310
-
-
Costi, T.A.1
-
42
-
-
58049094212
-
-
The eigenvalues of the operators S 2 and C 2 are given by S (S+1), C (C+1).
-
The eigenvalues of the operators S 2 and C 2 are given by S (S+1), C (C+1).
-
-
-
-
43
-
-
58049089515
-
-
Ph.D. thesis Budapest University of Technology and Economics
-
A. I. Tóth, Ph.D. thesis, Budapest University of Technology and Economics, 2009.
-
(2009)
-
-
Tóth, A.I.1
|