메뉴 건너뛰기




Volumn , Issue , 2008, Pages 407-412

A new descriptive clustering algorithm based on nonnegative matrix factorization

Author keywords

[No Author keywords available]

Indexed keywords

FACTORIZATION; LIGHT MEASUREMENT;

EID: 57949101466     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/GRC.2008.4664752     Document Type: Conference Paper
Times cited : (6)

References (8)
  • 1
    • 84900510076 scopus 로고    scopus 로고
    • Non-negative Matrix Factorization with Sparseness Constraints
    • Patrik O. Hoyer, Non-negative Matrix Factorization with Sparseness Constraints, Journal of Machine Learning Research 5 (2004) 1457-1469.
    • (2004) Journal of Machine Learning Research , vol.5 , pp. 1457-1469
    • Hoyer, P.O.1
  • 2
    • 0343442766 scopus 로고
    • Knowledge Acquisition via Incremental Conceptual Clustering
    • Douglas Fisher. Knowledge Acquisition via Incremental Conceptual Clustering, Machine Learning 1987, (2):129-172.
    • (1987) Machine Learning , vol.2 , pp. 129-172
    • Fisher, D.1
  • 3
    • 33750693493 scopus 로고    scopus 로고
    • Unsupervised Learning of Probabilistic Concept Hierarchies
    • Machine Learning and Its Applications, of, Springer
    • Wayne Iba and Pat Langley, Unsupervised Learning of Probabilistic Concept Hierarchies, Machine Learning and Its Applications, volume 2049 of Lecture Notes in Computer Science, Springer, 2001, pages 39-70,.
    • (2001) Lecture Notes in Computer Science , vol.2049 , pp. 39-70
    • Iba, W.1    Langley, P.2
  • 8
    • 0028561099 scopus 로고
    • Positive Matrix Factorization: A Non-negative Factor Model with Optimal Utilization of Error Estimates of Data Values
    • P. Paatero and U. Tapper, Positive Matrix Factorization: A Non-negative Factor Model with Optimal Utilization of Error Estimates of Data Values. Environmetrics 1994, 5, 111-126.
    • (1994) Environmetrics , vol.5 , pp. 111-126
    • Paatero, P.1    Tapper, U.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.