-
1
-
-
4944250893
-
The magic squares and Bell's theorem. Technical report, arXiv
-
quant-ph/0206070
-
P. K. Aravind. The magic squares and Bell's theorem. Technical report, arXiv:quant-ph/0206070, 2002.
-
(2002)
-
-
Aravind, P.K.1
-
2
-
-
0032058198
-
Proof verification and the hardness of approximation problems
-
S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. Proof verification and the hardness of approximation problems. J. ACM, 45(3):501-555, 1998.
-
(1998)
J. ACM
, vol.45
, Issue.3
, pp. 501-555
-
-
Arora, S.1
Lund, C.2
Motwani, R.3
Sudan, M.4
Szegedy, M.5
-
3
-
-
0031651077
-
Probabilistic checking of proofs: A new characterization of NP
-
S. Arora and S. Safra. Probabilistic checking of proofs: A new characterization of NP. J. ACM, 45(1):70-122, 1998.
-
(1998)
J. ACM
, vol.45
, Issue.1
, pp. 70-122
-
-
Arora, S.1
Safra, S.2
-
4
-
-
0000486090
-
On the Einstein-Podolsky-Rosen paradox
-
J. Bell. On the Einstein-Podolsky-Rosen paradox. Physics, 1(3):195-200, 1964.
-
(1964)
Physics
, vol.1
, Issue.3
, pp. 195-200
-
-
Bell, J.1
-
5
-
-
42749103634
-
Quantum fingerprinting
-
H. Buhrman, R. Cleve, J. Watrous, and R. de Wolf. Quantum fingerprinting. Phys. Rev. Lett, 87(16):167902, 2001.
-
(2001)
Phys. Rev. Lett
, vol.87
, Issue.16
, pp. 167902
-
-
Buhrman, H.1
Cleve, R.2
Watrous, J.3
de Wolf, R.4
-
6
-
-
0028370954
-
PSPACE is provable by two provers in one round
-
J.-Y. Cai, A. Condon, and R. J. Lipton. PSPACE is provable by two provers in one round. J. Comput. Syst. Sci., 48(1):183-193, 1994.
-
(1994)
J. Comput. Syst. Sci
, vol.48
, Issue.1
, pp. 183-193
-
-
Cai, J.-Y.1
Condon, A.2
Lipton, R.J.3
-
7
-
-
57949104260
-
-
R. Cleve, D. Gavinsky, and R. Jain. Entanglement-resistant two-prover interactive proof systems and non-adaptive private information retrieval systems. Technical report, arXiv:0707.1729, 2007.
-
R. Cleve, D. Gavinsky, and R. Jain. Entanglement-resistant two-prover interactive proof systems and non-adaptive private information retrieval systems. Technical report, arXiv:0707.1729, 2007.
-
-
-
-
8
-
-
4944260870
-
Consequences and limits of nonlocal strategies
-
R. Cleve, P. Høyer, B. Toner, and J. Watrous. Consequences and limits of nonlocal strategies. In Proc. 19th IEEE CCC, pages 236-249, 2004.
-
(2004)
Proc. 19th IEEE CCC
, pp. 236-249
-
-
Cleve, R.1
Høyer, P.2
Toner, B.3
Watrous, J.4
-
9
-
-
0012070851
-
Local operator theory, random matrices and Banach spaces
-
J. L. W. B. Johnson, editor, Elsevier Science
-
K. Davidson and S. Szarek. Local operator theory, random matrices and Banach spaces. In J. L. W. B. Johnson, editor, Handbook on the Geometry of Banach spaces, volume 1, pages 317-366. Elsevier Science, 2001.
-
(2001)
Handbook on the Geometry of Banach spaces
, vol.1
, pp. 317-366
-
-
Davidson, K.1
Szarek, S.2
-
11
-
-
57949093194
-
-
S. Goldwasser and M. Sipser. Private coins versus public coins in interactive proof systems. In S. Micali, editor, Randomness and Computation, 5 of Advances in Computing Research, pages 73-90. JAI Press, 1989.
-
S. Goldwasser and M. Sipser. Private coins versus public coins in interactive proof systems. In S. Micali, editor, Randomness and Computation, volume 5 of Advances in Computing Research, pages 73-90. JAI Press, 1989.
-
-
-
-
12
-
-
35448951300
-
Toward a general theory of quantum games
-
G. Gutoski and J. Watrous. Toward a general theory of quantum games. In Proc. 39th ACM STOC, pages 565-574, 2007.
-
(2007)
Proc. 39th ACM STOC
, pp. 565-574
-
-
Gutoski, G.1
Watrous, J.2
-
13
-
-
0039596882
-
Some unknown problems of unknown depth about operators on Hilbert space
-
P. Halmos. Some unknown problems of unknown depth about operators on Hilbert space. Proc. Roy. Soc. A, 76:67-76, 1976.
-
(1976)
Proc. Roy. Soc. A
, vol.76
, pp. 67-76
-
-
Halmos, P.1
-
14
-
-
0000844603
-
Some optimal inapproximability results
-
J. Håstad. Some optimal inapproximability results. J. ACM, 48(4):798-859, 2001.
-
(2001)
J. ACM
, vol.48
, Issue.4
, pp. 798-859
-
-
Håstad, J.1
-
15
-
-
51949088586
-
Generalized Tsirelson inequalities, commuting-operator provers, and multi-prover interactive proof systems
-
T. Ito, H. Kobayashi, D. Preda, X. Sun, and A. C.-C. Yao. Generalized Tsirelson inequalities, commuting-operator provers, and multi-prover interactive proof systems. In Proc. 23rd IEEE CCC, pages 187-198, 2008.
-
(2008)
Proc. 23rd IEEE CCC
, pp. 187-198
-
-
Ito, T.1
Kobayashi, H.2
Preda, D.3
Sun, X.4
Yao, A.C.-C.5
-
16
-
-
57949086291
-
Entangled games are hard to approximate
-
Technical report, arXiv:0704.2903
-
J. Kempe, H. Kobayashi, K. Matsumoto, B. Toner, and T. Vidick. Entangled games are hard to approximate. Technical report, arXiv:0704.2903, 2007.
-
(2007)
-
-
Kempe, J.1
Kobayashi, H.2
Matsumoto, K.3
Toner, B.4
Vidick, T.5
-
17
-
-
51749107495
-
Using entanglement in quantum multi-prover interactive proofs
-
J. Kempe, H. Kobayashi, K. Matsumoto, and T. Vidick. Using entanglement in quantum multi-prover interactive proofs. In Proc. 23rd IEEE CCC, pages 211-222, 2008.
-
(2008)
Proc. 23rd IEEE CCC
, pp. 211-222
-
-
Kempe, J.1
Kobayashi, H.2
Matsumoto, K.3
Vidick, T.4
-
18
-
-
57949106357
-
The unique games conjecture with entangled provers is false
-
J. Kempe, O. Regev, and B. Toner. The unique games conjecture with entangled provers is false. In Proc. 49th IEEE FOCS, 2008.
-
(2008)
Proc. 49th IEEE FOCS
-
-
Kempe, J.1
Regev, O.2
Toner, B.3
-
19
-
-
57949106176
-
-
J. Kempe and T. Vidick. On the power of entangled quantum provers. Technical report, arXiv:quant-ph/0612063, 2006.
-
J. Kempe and T. Vidick. On the power of entangled quantum provers. Technical report, arXiv:quant-ph/0612063, 2006.
-
-
-
-
20
-
-
57949088854
-
A bound on the cheating probability of strong quantum coin-flipping
-
Unpublished
-
A. Kitaev. A bound on the cheating probability of strong quantum coin-flipping. Unpublished.
-
-
-
Kitaev, A.1
-
21
-
-
0033720106
-
Parallelization, amplification, and exponential time simulation of quantum interactive proof systems
-
A. Kitaev and J. Watrous. Parallelization, amplification, and exponential time simulation of quantum interactive proof systems. In Proc. 32nd ACM STOC, pages 608-617, 2000.
-
(2000)
Proc. 32nd ACM STOC
, pp. 608-617
-
-
Kitaev, A.1
Watrous, J.2
-
22
-
-
0037561420
-
Quantum multi-prover interactive proof systems with limited prior entanglement
-
H. Kobayashi and K. Matsumoto. Quantum multi-prover interactive proof systems with limited prior entanglement. J. Comput. Syst. Sci., 66(3):429-450, 2003.
-
(2003)
J. Comput. Syst. Sci
, vol.66
, Issue.3
, pp. 429-450
-
-
Kobayashi, H.1
Matsumoto, K.2
-
23
-
-
34247476442
-
Quantum Merlin-Arthur proof systems: Are multiple Merlins more helpful to Arthur?
-
Proc. 14th ISAAC, of
-
H. Kobayashi, K. Matsumoto, and T. Yamakami. Quantum Merlin-Arthur proof systems: Are multiple Merlins more helpful to Arthur? In Proc. 14th ISAAC, volume 2906 of Lecture Notes in Computer Science, pages 189-198, 2003.
-
(2003)
Lecture Notes in Computer Science
, vol.2906
, pp. 189-198
-
-
Kobayashi, H.1
Matsumoto, K.2
Yamakami, T.3
-
24
-
-
0000624542
-
Almost commuting selfadjoint matrices and applications
-
X. Lin. Almost commuting selfadjoint matrices and applications. Fields Inst. Commun., 13:193-233, 1997.
-
(1997)
Fields Inst. Commun
, vol.13
, pp. 193-233
-
-
Lin, X.1
-
25
-
-
0026930922
-
Algebraic methods for interactive proof systems
-
C. Lund, L. Fortnow, H. Karloff, and N. Nisan. Algebraic methods for interactive proof systems. J. ACM, 39(4):859-868, 1992.
-
(1992)
J. ACM
, vol.39
, Issue.4
, pp. 859-868
-
-
Lund, C.1
Fortnow, L.2
Karloff, H.3
Nisan, N.4
-
26
-
-
33846400098
-
Bounding the set of quantum correlations
-
M. Navascues, S. Pironio, and A. Acín. Bounding the set of quantum correlations. Phys. Rev. Lett., 98(1):010401, 2007.
-
(2007)
Phys. Rev. Lett
, vol.98
, Issue.1
, pp. 010401
-
-
Navascues, M.1
Pironio, S.2
Acín, A.3
-
28
-
-
57949109284
-
-
Personal communication
-
D. Preda. Personal communication.
-
-
-
Preda, D.1
-
29
-
-
0026930543
-
-
A. Shamir. IP = PSPACE. J. ACM, 39(4):869-877, 1992.
-
A. Shamir. IP = PSPACE. J. ACM, 39(4):869-877, 1992.
-
-
-
-
30
-
-
0026930375
-
IP = PSPACE: Simplified proof
-
A. Shen. IP = PSPACE: Simplified proof. J. ACM, 39(4):878-880, 1992.
-
(1992)
J. ACM
, vol.39
, Issue.4
, pp. 878-880
-
-
Shen, A.1
-
31
-
-
0038540448
-
Symmetric extensions of quantum states and local hidden variable theories
-
B. M. Terhal, A. C. Doherty, and D. Schwab. Symmetric extensions of quantum states and local hidden variable theories. Phys. Rev. Lett., 90(15):157903, 2003.
-
(2003)
Phys. Rev. Lett
, vol.90
, Issue.15
, pp. 157903
-
-
Terhal, B.M.1
Doherty, A.C.2
Schwab, D.3
-
32
-
-
57949094896
-
-
B. F. Toner. Monogamy of nonlocal quantum correlations. Technical report, lanl-arXiv quant-ph/0601172, 2006.
-
B. F. Toner. Monogamy of nonlocal quantum correlations. Technical report, lanl-arXiv quant-ph/0601172, 2006.
-
-
-
-
33
-
-
0003054911
-
Quantum analogues of the Bell inequalities. The case of two spatially separated domains
-
B. S. Tsirelson. Quantum analogues of the Bell inequalities. The case of two spatially separated domains. J. Soviet Math., 36:557-570, 1987.
-
(1987)
J. Soviet Math
, vol.36
, pp. 557-570
-
-
Tsirelson, B.S.1
-
34
-
-
0037539018
-
Asymptotically commuting finite rank unitary operators without commuting approximants
-
D. Voiculescu. Asymptotically commuting finite rank unitary operators without commuting approximants. Acta Sci. Math., 45:429-431, 1983.
-
(1983)
Acta Sci. Math
, vol.45
, pp. 429-431
-
-
Voiculescu, D.1
-
35
-
-
0007850315
-
An application of Bell's inequalities to a quantum state extension problem
-
R. F. Werner. An application of Bell's inequalities to a quantum state extension problem. Lett. Math Phys., 17:359-363, 1989.
-
(1989)
Lett. Math Phys
, vol.17
, pp. 359-363
-
-
Werner, R.F.1
-
36
-
-
57949085683
-
-
Personal communication, Feb
-
A. Yao. Personal communication, Feb. 2007.
-
(2007)
-
-
Yao, A.1
|