메뉴 건너뛰기




Volumn 1, Issue , 2008, Pages 160-167

A scalable collaborative filtering algorithm based on localized preference

Author keywords

Clustering; Collaborative filtering; Localized preference; Recommender system

Indexed keywords

CLUSTERING ALGORITHMS; CONTROL THEORY; CYBERNETICS; LEARNING SYSTEMS; ROBOT LEARNING; SCALABILITY;

EID: 57849157816     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICMLC.2008.4620397     Document Type: Conference Paper
Times cited : (5)

References (24)
  • 2
    • 0013271231 scopus 로고    scopus 로고
    • Clustering for Collaborative Filtering Applications
    • IOS Press
    • A. Kohrs and B. Merialdo. Clustering for Collaborative Filtering Applications. In Proceedings of CIMCA'99. IOS Press, 1999.
    • (1999) Proceedings of CIMCA'99
    • Kohrs, A.1    Merialdo, B.2
  • 5
    • 0034592960 scopus 로고    scopus 로고
    • Cross-sell: A fast promotion-tunable customer-item recommendation method based on conditional independent probabilities
    • Brendan Kitts, David Freed, and Martin Vrieze. Cross-sell: A fast promotion-tunable customer-item recommendation method based on conditional independent probabilities. In Proceedings of ACM SIGKDD International Conference, pages 437-446, 2000.
    • (2000) Proceedings of ACM SIGKDD International Conference , pp. 437-446
    • Kitts, B.1    Freed, D.2    Vrieze, M.3
  • 7
    • 0002731035 scopus 로고    scopus 로고
    • Learning collaborative information filters
    • D. Billsus and M. J. Pazzani. Learning collaborative information filters. In Proceedings of ICML, pages 46-53, 1998.
    • (1998) Proceedings of ICML , pp. 46-53
    • Billsus, D.1    Pazzani, M.J.2
  • 8
    • 0001391984 scopus 로고    scopus 로고
    • Collaborative filtering by personality diagnosis: A hybrid memory and model based approach
    • D. M. Pennock, E. Horvitz, S. Lawrence, and C. Giles. Collaborative filtering by personality diagnosis: a hybrid memory and model based approach. In Proceedings of of UAI, 2000.
    • (2000) Proceedings of of UAI
    • Pennock, D.M.1    Horvitz, E.2    Lawrence, S.3    Giles, C.4
  • 9
    • 67149118018 scopus 로고    scopus 로고
    • A Scalable Collaborative Filtering Framework Based on Co-clustering
    • George T, Merugu S. A Scalable Collaborative Filtering Framework Based on Co-clustering. In Proceedings of SIGIR, 2006.
    • (2006) Proceedings of SIGIR
    • George, T.1    Merugu, S.2
  • 11
    • 85015559680 scopus 로고    scopus 로고
    • An algorithmic framework for performing collaborative filtering
    • Herlocker, Konstan, Borchers, et al., An algorithmic framework for performing collaborative filtering, In Proceedings of SIGIR, 1999. 230-237.
    • (1999) Proceedings of SIGIR , pp. 230-237
    • Herlocker, K.1    Borchers2
  • 15
    • 33750345680 scopus 로고    scopus 로고
    • Unifying Userbased and Itembased Collaborative Filtering Approaches by S imilarity Fusion
    • J. Wang, A. P. de Vries and M. J. T. Reinders. Unifying Userbased and Itembased Collaborative Filtering Approaches by S imilarity Fusion. In Proceedings of SIGIR, 2006.
    • (2006) Proceedings of SIGIR
    • Wang, J.1    de Vries, A.P.2    Reinders, M.J.T.3
  • 22
    • 0029179043 scopus 로고    scopus 로고
    • Shardanand, U., and Maes, P. Social information filtering: Algorithms for automating word of mouth. In Proceedings of the ACM CHI Conference on Human Factors in Computing Systems (Denver, CO, USA, May 1995), ACM Press, pages 210-217.
    • Shardanand, U., and Maes, P. Social information filtering: Algorithms for automating "word of mouth". In Proceedings of the ACM CHI Conference on Human Factors in Computing Systems (Denver, CO, USA, May 1995), ACM Press, pages 210-217.
  • 23
    • 84862271600 scopus 로고    scopus 로고
    • Latent Class Models for Collaborative Filtering
    • International Joint Conference on Artificial Intelligence
    • T. Hofmann and J. Puzicha, Latent Class Models for Collaborative Filtering. In Proceedings of the 16th International Joint Conference on Artificial Intelligence, 1999, 688-693.
    • (1999) Proceedings of the 16th , pp. 688-693
    • Hofmann, T.1    Puzicha, J.2
  • 24
    • 3042819722 scopus 로고    scopus 로고
    • Applying associative retrieval techniques to alleviate the sparsity problem in collaborative filtering
    • Z. Huang, H. Chen, and D. Zeng. Applying associative retrieval techniques to alleviate the sparsity problem in collaborative filtering. ACM Trans. Inf. Syst, 22(1): 116-142, 2004.
    • (2004) ACM Trans. Inf. Syst , vol.22 , Issue.1 , pp. 116-142
    • Huang, Z.1    Chen, H.2    Zeng, D.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.