메뉴 건너뛰기




Volumn 18, Issue 4, 2008, Pages 421-433

Metropolis-Hastings algorithms with adaptive proposals

Author keywords

Adaptive rejection Metropolis sampling; Bayesian inference; Markov chain Monte Carlo; Non conjugate distribution; State space model

Indexed keywords


EID: 57849136621     PISSN: 09603174     EISSN: None     Source Type: Journal    
DOI: 10.1007/s11222-008-9051-5     Document Type: Article
Times cited : (38)

References (49)
  • 1
    • 0040836224 scopus 로고
    • Comment on 'Representations of knowledge in complex systems' by U. Grenander and M.I. Miller
    • J.E. Besag 1994 Comment on 'Representations of knowledge in complex systems' by U. Grenander and M.I. Miller J. Roy. Stat. Soc. Ser. B 56 591 592
    • (1994) J. Roy. Stat. Soc. Ser. B , vol.56 , pp. 591-592
    • Besag, J.E.1
  • 2
    • 0141477361 scopus 로고
    • Bayesian computation and stochastic systems. with comments and a reply by the authors
    • J.E. Besag P.J. Green D. Higdon K. Mengersen 1995 Bayesian computation and stochastic systems. With comments and a reply by the authors Stat. Sci. 10 3 66
    • (1995) Stat. Sci. , vol.10 , pp. 3-66
    • Besag, J.E.1    Green, P.J.2    Higdon, D.3    Mengersen, K.4
  • 3
    • 20744442841 scopus 로고    scopus 로고
    • Identification of regeneration times in MCMC simulation, with application to adaptive schemes
    • A.E. Brockwell J.B. Kadane 2005 Identification of regeneration times in MCMC simulation, with application to adaptive schemes J. Comput. Graph. Stat. 14 436 458
    • (2005) J. Comput. Graph. Stat. , vol.14 , pp. 436-458
    • Brockwell, A.E.1    Kadane, J.B.2
  • 4
    • 84950445183 scopus 로고
    • A Monte Carlo approach to nonnormal and nonlinear state-space modeling
    • B.P. Carlin N.G. Polson D.S. Stoffer 1992 A Monte Carlo approach to nonnormal and nonlinear state-space modeling J. Am. Stat. Assoc. 87 493 500
    • (1992) J. Am. Stat. Assoc. , vol.87 , pp. 493-500
    • Carlin, B.P.1    Polson, N.G.2    Stoffer, D.S.3
  • 5
    • 0036522630 scopus 로고    scopus 로고
    • Improving convergence of the Hastings Metropolis algorithm with an adaptive proposal
    • D. Chauveau P. Vandekerkhove 2002 Improving convergence of the Hastings Metropolis algorithm with an adaptive proposal Scand. J. Stat. 29 13 29
    • (2002) Scand. J. Stat. , vol.29 , pp. 13-29
    • Chauveau, D.1    Vandekerkhove, P.2
  • 9
    • 0002425247 scopus 로고
    • On Markov chain Monte Carlo acceleration
    • A.E. Gelfand S.K. Sahu 1994 On Markov chain Monte Carlo acceleration J. Am. Stat. Assoc. 3 261 276
    • (1994) J. Am. Stat. Assoc. , vol.3 , pp. 261-276
    • Gelfand, A.E.1    Sahu, S.K.2
  • 10
    • 84950453304 scopus 로고
    • Sampling-based approaches to calculating marginal densities
    • A.E. Gelfand A.F.M. Smith 1990 Sampling-based approaches to calculating marginal densities J. Am. Stat. Assoc. 85 398 409
    • (1990) J. Am. Stat. Assoc. , vol.85 , pp. 398-409
    • Gelfand, A.E.1    Smith, A.F.M.2
  • 11
    • 0021518209 scopus 로고
    • Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images
    • S. Geman D. Geman 1984 Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images IEEE Trans. Pattern Anal. Mach. Intell. 6 721 741
    • (1984) IEEE Trans. Pattern Anal. Mach. Intell. , vol.6 , pp. 721-741
    • Geman, S.1    Geman, D.2
  • 12
    • 0001032163 scopus 로고
    • Evaluating the accuracy of sampling-based approaches to the calculation of posterior moments
    • Oxford University Press Oxford
    • Geweke, J.: Evaluating the accuracy of sampling-based approaches to the calculation of posterior moments. In: Bernardo, J.M., Berger, J.O., Dawid, A.P., Smith, A.F.M. (eds.) Bayesian Statistics, vol. 4, pp. 169-193. Oxford University Press, Oxford (1992)
    • (1992) Bayesian Statistics , vol.4 , pp. 169-193
    • Geweke, J.1    Bernardo, J.M.2    Berger, J.O.3    Dawid, A.P.4    Smith, A.F.M.5
  • 13
    • 0042693802 scopus 로고
    • Adaptive Markov Chain Monte Carlo
    • W.R. Gilks G.O. Roberts 1993 Adaptive Markov Chain Monte Carlo IMS Bull. 22 275
    • (1993) IMS Bull. , vol.22 , pp. 275
    • Gilks, W.R.1    Roberts, G.O.2
  • 16
    • 0038312668 scopus 로고
    • Adaptive rejection Metropolis sampling within Gibbs sampling
    • W.R. Gilks N.G. Best K.K.C. Tan 1995 Adaptive rejection Metropolis sampling within Gibbs sampling Appl. Stat. 44 455 472
    • (1995) Appl. Stat. , vol.44 , pp. 455-472
    • Gilks, W.R.1    Best, N.G.2    Tan, K.K.C.3
  • 18
    • 13144252695 scopus 로고    scopus 로고
    • Corrigendum: Adaptive rejection Metropolis sampling
    • W.R. Gilks R.M. Neal N.G. Best K.K.C. Tan 1997 Corrigendum: Adaptive rejection Metropolis sampling Appl. Stat. 46 541 542
    • (1997) Appl. Stat. , vol.46 , pp. 541-542
    • Gilks, W.R.1    Neal, R.M.2    Best, N.G.3    Tan, K.K.C.4
  • 19
    • 0032333313 scopus 로고    scopus 로고
    • Adaptive Markov chain Monte Carlo through regeneration
    • W.R. Gilks G.O. Roberts S.K. Sahu 1998 Adaptive Markov chain Monte Carlo through regeneration J. Am. Stat. Assoc. 93 1045 1054
    • (1998) J. Am. Stat. Assoc. , vol.93 , pp. 1045-1054
    • Gilks, W.R.1    Roberts, G.O.2    Sahu, S.K.3
  • 20
    • 0033436531 scopus 로고    scopus 로고
    • Adaptive proposal distribution for random walk Metropolis algorithm
    • H. Haario E. Saksman J. Tamminen 1999 Adaptive proposal distribution for random walk Metropolis algorithm Comput. Stat. 14 375 395
    • (1999) Comput. Stat. , vol.14 , pp. 375-395
    • Haario, H.1    Saksman, E.2    Tamminen, J.3
  • 23
    • 77956890234 scopus 로고
    • Monte Carlo sampling methods using Markov chains
    • W.K. Hastings 1970 Monte Carlo sampling methods using Markov chains Biometrika 57 97 109
    • (1970) Biometrika , vol.57 , pp. 97-109
    • Hastings, W.K.1
  • 25
    • 0003573107 scopus 로고    scopus 로고
    • Technical report, Norwegian Computing Center
    • Holden, L.: Adaptive chains. Technical report, Norwegian Computing Center (2000)
    • (2000) Adaptive Chains
    • Holden, L.1
  • 26
    • 85024429815 scopus 로고
    • A new approach to linear filtering and prediction problems
    • R.E. Kalman 1960 A new approach to linear filtering and prediction problems J. Basic Eng. 82 34 45
    • (1960) J. Basic Eng. , vol.82 , pp. 34-45
    • Kalman, R.E.1
  • 27
    • 0001387339 scopus 로고    scopus 로고
    • State space and hidden Markov models
    • Chapman & Hall London
    • Kuensch, H.R.: State space and hidden Markov models. In: Barndorff-Nielsen et al. (eds.) Complex Stochastic Systems, pp. 109-174. Chapman & Hall, London (2001)
    • (2001) Complex Stochastic Systems , pp. 109-174
    • Kuensch, H.R.1    Barndorff-Nielsen2
  • 28
    • 33744665890 scopus 로고    scopus 로고
    • Generalised Gibbs sampler and multigrid Monte Carlo for Bayesian computation
    • J.S. Liu C. Sabatti 2000 Generalised Gibbs sampler and multigrid Monte Carlo for Bayesian computation Biometrika 87 353 369
    • (2000) Biometrika , vol.87 , pp. 353-369
    • Liu, J.S.1    Sabatti, C.2
  • 30
    • 0034270549 scopus 로고    scopus 로고
    • Bayesian reconstruction of chaotic dynamical systems
    • R. Meyer N.L. Christensen 2000 Bayesian reconstruction of chaotic dynamical systems Phys. Rev. E 62 3535 3542
    • (2000) Phys. Rev. e , vol.62 , pp. 3535-3542
    • Meyer, R.1    Christensen, N.L.2
  • 31
    • 0032960742 scopus 로고    scopus 로고
    • Bayesian stock assessment using a state-space implementation of the delay difference model
    • R. Meyer R.B. Millar 1999 Bayesian stock assessment using a state-space implementation of the delay difference model Can. J. Fish. Aquat. Sci. 56 37 52
    • (1999) Can. J. Fish. Aquat. Sci. , vol.56 , pp. 37-52
    • Meyer, R.1    Millar, R.B.2
  • 32
    • 0000518006 scopus 로고    scopus 로고
    • BUGS for a Bayesian analysis of stochastic volatility models
    • 2
    • R. Meyer J. Yu 2000 BUGS for a Bayesian analysis of stochastic volatility models Econ. J. 3 2 198 215
    • (2000) Econ. J. , vol.3 , pp. 198-215
    • Meyer, R.1    Yu, J.2
  • 33
    • 57849109202 scopus 로고    scopus 로고
    • A new strategy for speeding Markov chain Monte Carlo algorithms
    • 12
    • A. Mira D. Sargent 2003 A new strategy for speeding Markov chain Monte Carlo algorithms Stat. Methods Appl. 1 12 49 60
    • (2003) Stat. Methods Appl. , vol.1 , pp. 49-60
    • Mira, A.1    Sargent, D.2
  • 36
    • 0035000043 scopus 로고    scopus 로고
    • Bayesian nonparametric modelling using mixtures of triangular distributions
    • 2
    • F. Perron K. Mengersen 2001 Bayesian nonparametric modelling using mixtures of triangular distributions Biometrics 57 2 518 529
    • (2001) Biometrics , vol.57 , pp. 518-529
    • Perron, F.1    Mengersen, K.2
  • 37
    • 38149146212 scopus 로고
    • Convergence of adaptive direction sampling
    • G.O. Roberts W.R. Gilks 1994 Convergence of adaptive direction sampling J. Multivar. Anal. 49 287 298
    • (1994) J. Multivar. Anal. , vol.49 , pp. 287-298
    • Roberts, G.O.1    Gilks, W.R.2
  • 38
    • 0013037129 scopus 로고    scopus 로고
    • Optimal scaling for various Metropolis-Hastings algorithms
    • G.O. Roberts J.S. Rosenthal 2001 Optimal scaling for various Metropolis-Hastings algorithms Stat. Sci. 16 351 367
    • (2001) Stat. Sci. , vol.16 , pp. 351-367
    • Roberts, G.O.1    Rosenthal, J.S.2
  • 39
    • 33846859066 scopus 로고    scopus 로고
    • Harris recurrence of Metropolis-within-Gibbs and trans-dimensional Markov chains
    • 4
    • G. Roberts J. Rosenthal 2006 Harris recurrence of Metropolis-within-Gibbs and trans-dimensional Markov chains Ann. Appl. Probab. 16 4 2123 2139
    • (2006) Ann. Appl. Probab. , vol.16 , pp. 2123-2139
    • Roberts, G.1    Rosenthal, J.2
  • 41
    • 34548026526 scopus 로고    scopus 로고
    • Coupling and ergodicity of adaptive MCMC
    • G.O. Roberts J.S. Rosenthal 2007 Coupling and ergodicity of adaptive MCMC J. Appl. Probab. 44 458 475
    • (2007) J. Appl. Probab. , vol.44 , pp. 458-475
    • Roberts, G.O.1    Rosenthal, J.S.2
  • 42
    • 85132364916 scopus 로고    scopus 로고
    • Exponential convergence of Langevin diffusions and their discrete approximations
    • G.O. Roberts R.L. Tweedie 1996 Exponential convergence of Langevin diffusions and their discrete approximations Biometrika 2 341 363
    • (1996) Biometrika , vol.2 , pp. 341-363
    • Roberts, G.O.1    Tweedie, R.L.2
  • 43
    • 2442470429 scopus 로고    scopus 로고
    • Self regenerative Markov chain Monte Carlo with adaptation
    • 3
    • S.K. Sahu A.A. Zhigljavsky 2003 Self regenerative Markov chain Monte Carlo with adaptation Bernoulli 9 3 395 422
    • (2003) Bernoulli , vol.9 , pp. 395-422
    • Sahu, S.K.1    Zhigljavsky, A.A.2
  • 46
    • 0000576595 scopus 로고
    • Markov chains for exploring posterior distributions
    • L. Tierney 1994 Markov chains for exploring posterior distributions Ann. Stat. 22 1701 1762
    • (1994) Ann. Stat. , vol.22 , pp. 1701-1762
    • Tierney, L.1
  • 47
    • 0033619197 scopus 로고    scopus 로고
    • Some adaptive Monte Carlo methods for Bayesian inference
    • L. Tierney A. Mira 1999 Some adaptive Monte Carlo methods for Bayesian inference Stat. Med. 18 2507 2515
    • (1999) Stat. Med. , vol.18 , pp. 2507-2515
    • Tierney, L.1    Mira, A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.