-
1
-
-
0002392504
-
A local-ratio theorem for approximating the weighted vertex cover problem
-
BAR-YEHUDA, R., AND EVEN, S. 1985. A local-ratio theorem for approximating the weighted vertex cover problem. Ann. Disc. Math. 25, 27-45.
-
(1985)
Ann. Disc. Math
, vol.25
, pp. 27-45
-
-
BAR-YEHUDA, R.1
EVEN, S.2
-
2
-
-
0028425392
-
New approximation algorithms for graph coloring
-
BLUM, A. 1994. New approximation algorithms for graph coloring. J. ACM 41, 3, 470-516.
-
(1994)
J. ACM
, vol.41
, Issue.3
, pp. 470-516
-
-
BLUM, A.1
-
3
-
-
0030737372
-
3/14)-coloring algorithm for 3-colorable graphs
-
3/14)-coloring algorithm for 3-colorable graphs. Inf. Proc. Lett. 61, 1, 49-53.
-
(1997)
Inf. Proc. Lett
, vol.61
, Issue.1
, pp. 49-53
-
-
BLUM, A.1
KARGER, D.2
-
4
-
-
84968866106
-
On semidefinite programming relaxations of graph coloring and vertex cover
-
ACM, New York
-
CHARIKAR, M. 2002. On semidefinite programming relaxations of graph coloring and vertex cover. In Proceedings of the 13th ACM-SIAM Symposium on Discrete Algorithms. ACM, New York, 616-620.
-
(2002)
Proceedings of the 13th ACM-SIAM Symposium on Discrete Algorithms
, pp. 616-620
-
-
CHARIKAR, M.1
-
5
-
-
29844440416
-
On the hardness of approximating minimum vertex cover
-
DINUR, I., AND SAFRA, S. 2005. On the hardness of approximating minimum vertex cover. Ann. Math. 162, 1.
-
(2005)
Ann. Math
, vol.162
, pp. 1
-
-
DINUR, I.1
SAFRA, S.2
-
6
-
-
0036953749
-
Graphs with tiny vector chromatic numbers and huge chromatic numbers
-
IEEE Computer Society Press, Los Alamitos, CA
-
FEIGE, U., LANGBERG, M., AND SCHECHTMAN, G. 2002. Graphs with tiny vector chromatic numbers and huge chromatic numbers. In Proceedings of the 43rd Annual IEEE Symposium on Foundations of Computer Science. IEEE Computer Society Press, Los Alamitos, CA, 283-292.
-
(2002)
Proceedings of the 43rd Annual IEEE Symposium on Foundations of Computer Science
, pp. 283-292
-
-
FEIGE, U.1
LANGBERG, M.2
SCHECHTMAN, G.3
-
7
-
-
84893574327
-
Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming
-
GOEMANS, M., AND WILLIAMSON, D. 1995. Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming. J. ACM 42, 1115-1145.
-
(1995)
J. ACM
, vol.42
, pp. 1115-1145
-
-
GOEMANS, M.1
WILLIAMSON, D.2
-
8
-
-
51249185617
-
The ellipsoid method and its consequences in combinatorial optimization
-
GROTSCHEL, M., LÓVASZ, L., AND SCHRIJVER, A. 1981. The ellipsoid method and its consequences in combinatorial optimization. Combinatorica 1, 2, 169-197.
-
(1981)
Combinatorica
, vol.1
, Issue.2
, pp. 169-197
-
-
GROTSCHEL, M.1
LÓVASZ, L.2
SCHRIJVER, A.3
-
9
-
-
0036588838
-
Improved approximation algorithms for the vertex cover problem in graphs and hypergraphs
-
HALPERIN, E. 2002. Improved approximation algorithms for the vertex cover problem in graphs and hypergraphs. SIAM J. Comput. 31, 1608-1623.
-
(2002)
SIAM J. Comput
, vol.31
, pp. 1608-1623
-
-
HALPERIN, E.1
-
11
-
-
0001993328
-
Approximate graph coloring by semidefinite programming
-
IEEE Computer Society Press, Los Alamitos, CA
-
KARGER, D. R., MOTWANI, R., AND SUDAN, M. 1994. Approximate graph coloring by semidefinite programming. In Proceedings of the IEEE Symposium on Foundations of Computer Science. IEEE Computer Society Press, Los Alamitos, CA, 2-13.
-
(1994)
Proceedings of the IEEE Symposium on Foundations of Computer Science
, pp. 2-13
-
-
KARGER, D.R.1
MOTWANI, R.2
SUDAN, M.3
-
12
-
-
0043016118
-
Vertex cover might be hard to approximate to within 2-ε
-
IEEE Computer Society Press, Los Alamitos, CA
-
KHOT, S., AND REGEV, O. 2003. Vertex cover might be hard to approximate to within 2-ε. In Proceedings of the 18th Annual IEEE Conference on Computational Complexity. IEEE Computer Society Press, Los Alamitos, CA, 379-386.
-
(2003)
Proceedings of the 18th Annual IEEE Conference on Computational Complexity
, pp. 379-386
-
-
KHOT, S.1
REGEV, O.2
-
13
-
-
0011190325
-
The Lóvasz theta function and a semidefinite programming relaxation of vertex cover
-
KLEINBERG, J. M., AND GOEMANS, M. X. 1998. The Lóvasz theta function and a semidefinite programming relaxation of vertex cover. SIAM J. Disc. Math. 11, 2, 196-204.
-
(1998)
SIAM J. Disc. Math
, vol.11
, Issue.2
, pp. 196-204
-
-
KLEINBERG, J.M.1
GOEMANS, M.X.2
-
14
-
-
57849118634
-
-
LÓVASZ, L., AND PLUMMER, M. D. 1986. Matching Theory. North-Holland Mathematics Studies: Annals of Discrete Mathematics. North-Holland, Amsterdam, The Netherlands.
-
LÓVASZ, L., AND PLUMMER, M. D. 1986. Matching Theory. North-Holland Mathematics Studies: Annals of Discrete Mathematics. North-Holland, Amsterdam, The Netherlands.
-
-
-
-
15
-
-
0022045936
-
Ramsey numbers and an approximation algorithm for the vertex cover problem
-
MONIEN, B., AND SPECKENMEYER, E. 1985. Ramsey numbers and an approximation algorithm for the vertex cover problem. Acta Inf. 22, 115-123.
-
(1985)
Acta Inf
, vol.22
, pp. 115-123
-
-
MONIEN, B.1
SPECKENMEYER, E.2
|