메뉴 건너뛰기




Volumn 19, Issue 12, 2008, Pages 2032-2043

Multilayer Potts perceptrons with Levenberg-Marquardt learning

Author keywords

Gaussian array; Population encoding; Post nonlinear projection; Potts encoding; Sparse coding; Supervised dimensionality reduction; Supervised learning

Indexed keywords

CYBERNETICS; EDUCATION; ELECTRIC LOADS; ENCODING (SYMBOLS); FUNCTIONS; MATHEMATICAL MODELS; MULTILAYERS; NEURAL NETWORKS; PATTERN RECOGNITION SYSTEMS; POLYNOMIAL APPROXIMATION; PROBABILITY DENSITY FUNCTION; PROGRAMMING THEORY; SUPERVISED LEARNING; TRELLIS CODES;

EID: 57749207082     PISSN: 10459227     EISSN: None     Source Type: Journal    
DOI: 10.1109/TNN.2008.2003271     Document Type: Article
Times cited : (38)

References (34)
  • 2
    • 0022471098 scopus 로고
    • Learning representations by back-propagation errors
    • D. E. Rumelhart, "Learning representations by back-propagation errors," Nature, vol. 323, p. 533, 1986.
    • (1986) Nature , vol.323 , pp. 533
    • Rumelhart, D.E.1
  • 3
    • 0024125983 scopus 로고
    • Backpropagation: Past and the future
    • Jul
    • P. J. Werbos, "Backpropagation: Past and the future," in Proc. IEEE Int. Conf. Neural Netw., Jul. 1988, vol. 1, pp. 343-353.
    • (1988) Proc. IEEE Int. Conf. Neural Netw , vol.1 , pp. 343-353
    • Werbos, P.J.1
  • 5
    • 0025488663 scopus 로고
    • 30 years of adaptive neural networks: Perceptron, Madaline, and backpropagation
    • Sep
    • B. Widrow, "30 years of adaptive neural networks: Perceptron, Madaline, and backpropagation," Proc. IEEE, vol. 78, no. 9, pp. 1415-1442, Sep. 1990.
    • (1990) Proc. IEEE , vol.78 , Issue.9 , pp. 1415-1442
    • Widrow, B.1
  • 6
    • 13844255524 scopus 로고    scopus 로고
    • Smooth function approximation using neural networks
    • Jan
    • S. Ferrari and R. F. Stengel, "Smooth function approximation using neural networks," IEEE Trans. Neural Netw., vol. 16, no. 1, pp. 24-38, Jan. 2005.
    • (2005) IEEE Trans. Neural Netw , vol.16 , Issue.1 , pp. 24-38
    • Ferrari, S.1    Stengel, R.F.2
  • 7
    • 33646496538 scopus 로고    scopus 로고
    • Function approximation using generalized Adalines
    • May
    • J. M. Wu, Z. H. Lin, and P. H. Hsu, "Function approximation using generalized Adalines," IEEE Trans. Neural Netw., vol. 17, no. 3, pp. 541-558, May 2006.
    • (2006) IEEE Trans. Neural Netw , vol.17 , Issue.3 , pp. 541-558
    • Wu, J.M.1    Lin, Z.H.2    Hsu, P.H.3
  • 12
    • 15344349305 scopus 로고    scopus 로고
    • Neural network adaptive control for nonlinear nonnegative dynamical systems
    • Mar
    • T. Hayakawa, W. M. Haddad, N. Hovakimyan, and V. Chellaboina, "Neural network adaptive control for nonlinear nonnegative dynamical systems," IEEE Trans. Neural Netw., vol. 16, no. 2, pp. 399-413, Mar. 2005.
    • (2005) IEEE Trans. Neural Netw , vol.16 , Issue.2 , pp. 399-413
    • Hayakawa, T.1    Haddad, W.M.2    Hovakimyan, N.3    Chellaboina, V.4
  • 15
    • 0026835298 scopus 로고
    • Optimization for training neural nets
    • Mar
    • E. Barnard, "Optimization for training neural nets," IEEE Trans. Neural Netw., vol. 3, no. 2, pp. 232-240, Mar. 1992.
    • (1992) IEEE Trans. Neural Netw , vol.3 , Issue.2 , pp. 232-240
    • Barnard, E.1
  • 17
    • 0028543366 scopus 로고
    • Training feedforward networks with the Marquardt algorithm
    • Nov
    • M. T. Hagan and M. B. Menhaj, "Training feedforward networks with the Marquardt algorithm," IEEE Trans. Neural Netw., vol. 5, no. 6, pp. 989-993, Nov. 1994.
    • (1994) IEEE Trans. Neural Netw , vol.5 , Issue.6 , pp. 989-993
    • Hagan, M.T.1    Menhaj, M.B.2
  • 18
    • 0001024110 scopus 로고
    • 1st-order and 2nd-order methods for learning - Between steepest descent and Newton method
    • R. Battiti, "1st-order and 2nd-order methods for learning - Between steepest descent and Newton method," Neural Comput., vol. 4, pp. 141-166, 1992.
    • (1992) Neural Comput , vol.4 , pp. 141-166
    • Battiti, R.1
  • 19
    • 0026882084 scopus 로고
    • Conjugate-gradient algorithm for efficient training of artificial neural networks
    • C. Charalambous, "Conjugate-gradient algorithm for efficient training of artificial neural networks," Inst. Electr. Eng. Proc.-G Circuits Devices Syst., vol. 139, pp. 301-310, 1992.
    • (1992) Inst. Electr. Eng. Proc.-G Circuits Devices Syst , vol.139 , pp. 301-310
    • Charalambous, C.1
  • 20
    • 57749174589 scopus 로고    scopus 로고
    • >P. Dayan and L. F. Abbott, Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems. Cambridge, MA: MIT Press, 2001.
    • >P. Dayan and L. F. Abbott, Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems. Cambridge, MA: MIT Press, 2001.
  • 21
    • 0002259425 scopus 로고
    • A new method for mapping optimization problems onto neural network
    • C. Peterson and B. Södergerbg, "A new method for mapping optimization problems onto neural network," Int. J. Neural Syst., vol. 1, pp. 3-22, 1989.
    • (1989) Int. J. Neural Syst , vol.1 , pp. 3-22
    • Peterson, C.1    Södergerbg, B.2
  • 22
    • 0034284324 scopus 로고    scopus 로고
    • Potts models with two sets of interactive dynamics
    • J. M. Wu, "Potts models with two sets of interactive dynamics," Neurocomputing, vol. 34, pp. 55-77, 2000.
    • (2000) Neurocomputing , vol.34 , pp. 55-77
    • Wu, J.M.1
  • 23
    • 0035273462 scopus 로고    scopus 로고
    • Independent component analysis using Potts models
    • Mar
    • J. M. Wu and S. J. Chiu, "Independent component analysis using Potts models," IEEE Trans. Neural Netw., vol. 12, no. 2, pp. 202-211, Mar. 2001.
    • (2001) IEEE Trans. Neural Netw , vol.12 , Issue.2 , pp. 202-211
    • Wu, J.M.1    Chiu, S.J.2
  • 24
    • 0040669971 scopus 로고    scopus 로고
    • Natural discriminant analysis using interactive Potts models
    • Mar
    • J. M. Wu, "Natural discriminant analysis using interactive Potts models," Neural Computat., vol. 14, no. 3, pp. 689-713, Mar. 2002.
    • (2002) Neural Computat , vol.14 , Issue.3 , pp. 689-713
    • Wu, J.M.1
  • 25
    • 0035989178 scopus 로고    scopus 로고
    • Learning generative models of natural images
    • J. M. Wu and Z. H. Lin, "Learning generative models of natural images," Neural Netw., vol. 15, no. 3, pp. 337-347, 2002.
    • (2002) Neural Netw , vol.15 , Issue.3 , pp. 337-347
    • Wu, J.M.1    Lin, Z.H.2
  • 26
    • 0000473620 scopus 로고
    • The mean-field theory of a Q-state neural network model
    • J. Cook, "The mean-field theory of a Q-state neural network model," J. Phys. A, Math. Gen., vol. 22, pp. 2000-2012, 1989.
    • (1989) J. Phys. A, Math. Gen , vol.22 , pp. 2000-2012
    • Cook, J.1
  • 27
    • 0000707330 scopus 로고
    • Potts-Glass models of neural networks
    • I. Kanter, "Potts-Glass models of neural networks," Phys. Rev. A, Gen. Phys., vol. 37, pp. 2739-2742, 1988.
    • (1988) Phys. Rev. A, Gen. Phys , vol.37 , pp. 2739-2742
    • Kanter, I.1
  • 28
    • 0000693289 scopus 로고
    • Storing an extensive number of grey-toned patterns in a neural network using multistate neurons
    • H. Rieger, "Storing an extensive number of grey-toned patterns in a neural network using multistate neurons," J. Phys. A, Math. Gen., vol. 23, pp. L1273-L1279, 1990.
    • (1990) J. Phys. A, Math. Gen , vol.23
    • Rieger, H.1
  • 29
    • 0007823199 scopus 로고
    • Invariant recognition in Potts glass neural networks
    • H. Vogt and A. Zippelius, "Invariant recognition in Potts glass neural networks," J. Phys. A, Math. Gen., vol. 25, pp. 2209-2226, 1992.
    • (1992) J. Phys. A, Math. Gen , vol.25 , pp. 2209-2226
    • Vogt, H.1    Zippelius, A.2
  • 30
    • 0039964857 scopus 로고
    • Neural-network model composed of multidimensional spin neurons
    • Y. Nakamura, K. Torii, and T. Munaka, "Neural-network model composed of multidimensional spin neurons," Phys. Rev. B, Condens. Matter, vol. 51, pp. 1538-1546, 1995.
    • (1995) Phys. Rev. B, Condens. Matter , vol.51 , pp. 1538-1546
    • Nakamura, Y.1    Torii, K.2    Munaka, T.3
  • 31
    • 84904240120 scopus 로고    scopus 로고
    • Vector associative memory models
    • B. Kryzhanovsky and L. Litinskii, "Vector associative memory models," Autom. Remote Control, vol. 64, no. 11, pp. 1782-1793, 2003.
    • (2003) Autom. Remote Control , vol.64 , Issue.11 , pp. 1782-1793
    • Kryzhanovsky, B.1    Litinskii, L.2
  • 32
    • 0038538359 scopus 로고    scopus 로고
    • Convergence properties and data efficiency of the minimum error entropy criterion in adaline training
    • Jul
    • D. Erdogmus and J. C. Principe, "Convergence properties and data efficiency of the minimum error entropy criterion in adaline training," IEEE Trans. Signal Process., vol. 51, no. 7, pp. 1966-1978, Jul. 2003.
    • (2003) IEEE Trans. Signal Process , vol.51 , Issue.7 , pp. 1966-1978
    • Erdogmus, D.1    Principe, J.C.2
  • 34
    • 1842483409 scopus 로고    scopus 로고
    • E. W. M. Lee, C. P. Lim, R. K. K. Yuen, and S. M. Lo, A hybrid neural network model for noisy data regression, IEEE Trans. Syst. Man Cybern. B, Cybern., 34, no. 2, pp. 951-960, Apr. 2004.
    • E. W. M. Lee, C. P. Lim, R. K. K. Yuen, and S. M. Lo, "A hybrid neural network model for noisy data regression," IEEE Trans. Syst. Man Cybern. B, Cybern., vol. 34, no. 2, pp. 951-960, Apr. 2004.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.