-
2
-
-
0022471098
-
Learning representations by back-propagation errors
-
D. E. Rumelhart, "Learning representations by back-propagation errors," Nature, vol. 323, p. 533, 1986.
-
(1986)
Nature
, vol.323
, pp. 533
-
-
Rumelhart, D.E.1
-
3
-
-
0024125983
-
Backpropagation: Past and the future
-
Jul
-
P. J. Werbos, "Backpropagation: Past and the future," in Proc. IEEE Int. Conf. Neural Netw., Jul. 1988, vol. 1, pp. 343-353.
-
(1988)
Proc. IEEE Int. Conf. Neural Netw
, vol.1
, pp. 343-353
-
-
Werbos, P.J.1
-
4
-
-
0001795753
-
-
M. Yovitz, G. Jacobi, and G. Goldstein, Eds. Washington, DC: Spartan Books
-
B. Widrow, Generalization and Information Storage in Networks of Adaline Neuron in Self-Organizing Systems, M. Yovitz, G. Jacobi, and G. Goldstein, Eds. Washington, DC: Spartan Books, 1962, pp. 435-461.
-
(1962)
Generalization and Information Storage in Networks of Adaline Neuron in Self-Organizing Systems
, pp. 435-461
-
-
Widrow, B.1
-
5
-
-
0025488663
-
30 years of adaptive neural networks: Perceptron, Madaline, and backpropagation
-
Sep
-
B. Widrow, "30 years of adaptive neural networks: Perceptron, Madaline, and backpropagation," Proc. IEEE, vol. 78, no. 9, pp. 1415-1442, Sep. 1990.
-
(1990)
Proc. IEEE
, vol.78
, Issue.9
, pp. 1415-1442
-
-
Widrow, B.1
-
6
-
-
13844255524
-
Smooth function approximation using neural networks
-
Jan
-
S. Ferrari and R. F. Stengel, "Smooth function approximation using neural networks," IEEE Trans. Neural Netw., vol. 16, no. 1, pp. 24-38, Jan. 2005.
-
(2005)
IEEE Trans. Neural Netw
, vol.16
, Issue.1
, pp. 24-38
-
-
Ferrari, S.1
Stengel, R.F.2
-
7
-
-
33646496538
-
Function approximation using generalized Adalines
-
May
-
J. M. Wu, Z. H. Lin, and P. H. Hsu, "Function approximation using generalized Adalines," IEEE Trans. Neural Netw., vol. 17, no. 3, pp. 541-558, May 2006.
-
(2006)
IEEE Trans. Neural Netw
, vol.17
, Issue.3
, pp. 541-558
-
-
Wu, J.M.1
Lin, Z.H.2
Hsu, P.H.3
-
12
-
-
15344349305
-
Neural network adaptive control for nonlinear nonnegative dynamical systems
-
Mar
-
T. Hayakawa, W. M. Haddad, N. Hovakimyan, and V. Chellaboina, "Neural network adaptive control for nonlinear nonnegative dynamical systems," IEEE Trans. Neural Netw., vol. 16, no. 2, pp. 399-413, Mar. 2005.
-
(2005)
IEEE Trans. Neural Netw
, vol.16
, Issue.2
, pp. 399-413
-
-
Hayakawa, T.1
Haddad, W.M.2
Hovakimyan, N.3
Chellaboina, V.4
-
15
-
-
0026835298
-
Optimization for training neural nets
-
Mar
-
E. Barnard, "Optimization for training neural nets," IEEE Trans. Neural Netw., vol. 3, no. 2, pp. 232-240, Mar. 1992.
-
(1992)
IEEE Trans. Neural Netw
, vol.3
, Issue.2
, pp. 232-240
-
-
Barnard, E.1
-
16
-
-
0003574105
-
-
London, U.K, Springer-Verlag
-
M. NØrgaard, O. Ravn, N. K. Poulsen, and L. K. Hansen, Neural Networks for Modelling and Control of Dynamic Systems. London, U.K.: Springer-Verlag, 2000.
-
(2000)
Neural Networks for Modelling and Control of Dynamic Systems
-
-
NØrgaard, M.1
Ravn, O.2
Poulsen, N.K.3
Hansen, L.K.4
-
17
-
-
0028543366
-
Training feedforward networks with the Marquardt algorithm
-
Nov
-
M. T. Hagan and M. B. Menhaj, "Training feedforward networks with the Marquardt algorithm," IEEE Trans. Neural Netw., vol. 5, no. 6, pp. 989-993, Nov. 1994.
-
(1994)
IEEE Trans. Neural Netw
, vol.5
, Issue.6
, pp. 989-993
-
-
Hagan, M.T.1
Menhaj, M.B.2
-
18
-
-
0001024110
-
1st-order and 2nd-order methods for learning - Between steepest descent and Newton method
-
R. Battiti, "1st-order and 2nd-order methods for learning - Between steepest descent and Newton method," Neural Comput., vol. 4, pp. 141-166, 1992.
-
(1992)
Neural Comput
, vol.4
, pp. 141-166
-
-
Battiti, R.1
-
19
-
-
0026882084
-
Conjugate-gradient algorithm for efficient training of artificial neural networks
-
C. Charalambous, "Conjugate-gradient algorithm for efficient training of artificial neural networks," Inst. Electr. Eng. Proc.-G Circuits Devices Syst., vol. 139, pp. 301-310, 1992.
-
(1992)
Inst. Electr. Eng. Proc.-G Circuits Devices Syst
, vol.139
, pp. 301-310
-
-
Charalambous, C.1
-
20
-
-
57749174589
-
-
>P. Dayan and L. F. Abbott, Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems. Cambridge, MA: MIT Press, 2001.
-
>P. Dayan and L. F. Abbott, Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems. Cambridge, MA: MIT Press, 2001.
-
-
-
-
21
-
-
0002259425
-
A new method for mapping optimization problems onto neural network
-
C. Peterson and B. Södergerbg, "A new method for mapping optimization problems onto neural network," Int. J. Neural Syst., vol. 1, pp. 3-22, 1989.
-
(1989)
Int. J. Neural Syst
, vol.1
, pp. 3-22
-
-
Peterson, C.1
Södergerbg, B.2
-
22
-
-
0034284324
-
Potts models with two sets of interactive dynamics
-
J. M. Wu, "Potts models with two sets of interactive dynamics," Neurocomputing, vol. 34, pp. 55-77, 2000.
-
(2000)
Neurocomputing
, vol.34
, pp. 55-77
-
-
Wu, J.M.1
-
23
-
-
0035273462
-
Independent component analysis using Potts models
-
Mar
-
J. M. Wu and S. J. Chiu, "Independent component analysis using Potts models," IEEE Trans. Neural Netw., vol. 12, no. 2, pp. 202-211, Mar. 2001.
-
(2001)
IEEE Trans. Neural Netw
, vol.12
, Issue.2
, pp. 202-211
-
-
Wu, J.M.1
Chiu, S.J.2
-
24
-
-
0040669971
-
Natural discriminant analysis using interactive Potts models
-
Mar
-
J. M. Wu, "Natural discriminant analysis using interactive Potts models," Neural Computat., vol. 14, no. 3, pp. 689-713, Mar. 2002.
-
(2002)
Neural Computat
, vol.14
, Issue.3
, pp. 689-713
-
-
Wu, J.M.1
-
25
-
-
0035989178
-
Learning generative models of natural images
-
J. M. Wu and Z. H. Lin, "Learning generative models of natural images," Neural Netw., vol. 15, no. 3, pp. 337-347, 2002.
-
(2002)
Neural Netw
, vol.15
, Issue.3
, pp. 337-347
-
-
Wu, J.M.1
Lin, Z.H.2
-
26
-
-
0000473620
-
The mean-field theory of a Q-state neural network model
-
J. Cook, "The mean-field theory of a Q-state neural network model," J. Phys. A, Math. Gen., vol. 22, pp. 2000-2012, 1989.
-
(1989)
J. Phys. A, Math. Gen
, vol.22
, pp. 2000-2012
-
-
Cook, J.1
-
27
-
-
0000707330
-
Potts-Glass models of neural networks
-
I. Kanter, "Potts-Glass models of neural networks," Phys. Rev. A, Gen. Phys., vol. 37, pp. 2739-2742, 1988.
-
(1988)
Phys. Rev. A, Gen. Phys
, vol.37
, pp. 2739-2742
-
-
Kanter, I.1
-
28
-
-
0000693289
-
Storing an extensive number of grey-toned patterns in a neural network using multistate neurons
-
H. Rieger, "Storing an extensive number of grey-toned patterns in a neural network using multistate neurons," J. Phys. A, Math. Gen., vol. 23, pp. L1273-L1279, 1990.
-
(1990)
J. Phys. A, Math. Gen
, vol.23
-
-
Rieger, H.1
-
29
-
-
0007823199
-
Invariant recognition in Potts glass neural networks
-
H. Vogt and A. Zippelius, "Invariant recognition in Potts glass neural networks," J. Phys. A, Math. Gen., vol. 25, pp. 2209-2226, 1992.
-
(1992)
J. Phys. A, Math. Gen
, vol.25
, pp. 2209-2226
-
-
Vogt, H.1
Zippelius, A.2
-
30
-
-
0039964857
-
Neural-network model composed of multidimensional spin neurons
-
Y. Nakamura, K. Torii, and T. Munaka, "Neural-network model composed of multidimensional spin neurons," Phys. Rev. B, Condens. Matter, vol. 51, pp. 1538-1546, 1995.
-
(1995)
Phys. Rev. B, Condens. Matter
, vol.51
, pp. 1538-1546
-
-
Nakamura, Y.1
Torii, K.2
Munaka, T.3
-
31
-
-
84904240120
-
Vector associative memory models
-
B. Kryzhanovsky and L. Litinskii, "Vector associative memory models," Autom. Remote Control, vol. 64, no. 11, pp. 1782-1793, 2003.
-
(2003)
Autom. Remote Control
, vol.64
, Issue.11
, pp. 1782-1793
-
-
Kryzhanovsky, B.1
Litinskii, L.2
-
32
-
-
0038538359
-
Convergence properties and data efficiency of the minimum error entropy criterion in adaline training
-
Jul
-
D. Erdogmus and J. C. Principe, "Convergence properties and data efficiency of the minimum error entropy criterion in adaline training," IEEE Trans. Signal Process., vol. 51, no. 7, pp. 1966-1978, Jul. 2003.
-
(2003)
IEEE Trans. Signal Process
, vol.51
, Issue.7
, pp. 1966-1978
-
-
Erdogmus, D.1
Principe, J.C.2
-
34
-
-
1842483409
-
-
E. W. M. Lee, C. P. Lim, R. K. K. Yuen, and S. M. Lo, A hybrid neural network model for noisy data regression, IEEE Trans. Syst. Man Cybern. B, Cybern., 34, no. 2, pp. 951-960, Apr. 2004.
-
E. W. M. Lee, C. P. Lim, R. K. K. Yuen, and S. M. Lo, "A hybrid neural network model for noisy data regression," IEEE Trans. Syst. Man Cybern. B, Cybern., vol. 34, no. 2, pp. 951-960, Apr. 2004.
-
-
-
|