-
7
-
-
0031208596
-
New stress assumption for hybrid stress elements and refined four-node plane and eight node brick elements
-
Yeo ST, Lee BC. New stress assumption for hybrid stress elements and refined four-node plane and eight node brick elements. International Journal for Numerical Methods in Engineering 1997; 40:2933-2952.
-
(1997)
International Journal for Numerical Methods in Engineering
, vol.40
, pp. 2933-2952
-
-
Yeo, S.T.1
Lee, B.C.2
-
10
-
-
0001773954
-
Incompatible displacement models
-
Fenves SJ et al, eds, Academic Press: New York
-
Wilson EL, Taylor RL, Doherty WP, Ghaboussi J. Incompatible displacement models. In Numerical and Computer Methods in Structural Mechanics, Fenves SJ et al. (eds). Academic Press: New York, 1973; 43-57.
-
(1973)
Numerical and Computer Methods in Structural Mechanics
, pp. 43-57
-
-
Wilson, E.L.1
Taylor, R.L.2
Doherty, W.P.3
Ghaboussi, J.4
-
11
-
-
0034135369
-
On immunizing the 5-beta hybrid stress element models from 'trapezoidal locking' in practical analyses
-
Sze KY. On immunizing the 5-beta hybrid stress element models from 'trapezoidal locking' in practical analyses. International Journal for Numerical Methods in Engineering 2000; 47:907-920.
-
(2000)
International Journal for Numerical Methods in Engineering
, vol.47
, pp. 907-920
-
-
Sze, K.Y.1
-
12
-
-
0029276186
-
Generation of an eight node brick element using Papkovitch-Neuber functions
-
Venkatesh DN, Shrinivasa U. Generation of an eight node brick element using Papkovitch-Neuber functions. Computers and Structures 1995; 54:1077-1084.
-
(1995)
Computers and Structures
, vol.54
, pp. 1077-1084
-
-
Venkatesh, D.N.1
Shrinivasa, U.2
-
14
-
-
0343244632
-
Numerical implementation of hybrid-Trefftz displacement elements
-
Teixeira de Freitas JA, Cismaşiu C. Numerical implementation of hybrid-Trefftz displacement elements. Computers and Structures 1999; 73:207-225.
-
(1999)
Computers and Structures
, vol.73
, pp. 207-225
-
-
Teixeira de Freitas, J.A.1
Cismaşiu, C.2
-
16
-
-
57749203559
-
Membrane elements insensitive to distortion using the quadrilateral area coordinate method
-
Chen XM, Cen S, Long Y, Yao ZH. Membrane elements insensitive to distortion using the quadrilateral area coordinate method. Computers and Structures 2004; 25:376-384.
-
(2004)
Computers and Structures
, vol.25
, pp. 376-384
-
-
Chen, X.M.1
Cen, S.2
Long, Y.3
Yao, Z.H.4
-
18
-
-
0345303889
-
A novel unsymmetric 8-node plane element immune to mesh distortion under a quadratic displacement field
-
Rajendran S, Liew KM. A novel unsymmetric 8-node plane element immune to mesh distortion under a quadratic displacement field. International Journal for Numerical Methods in Engineering 2003; 58:1713-1748.
-
(2003)
International Journal for Numerical Methods in Engineering
, vol.58
, pp. 1713-1748
-
-
Rajendran, S.1
Liew, K.M.2
-
19
-
-
2342506580
-
Distortion sensitivity of 8-node plane elasticity elements based on parametric, metric, parametric-metric and metric-parametric formulations
-
Rajendran S, Subramanian S. Distortion sensitivity of 8-node plane elasticity elements based on parametric, metric, parametric-metric and metric-parametric formulations. Structural Engineering and Mechanics 2004; 17:767-788.
-
(2004)
Structural Engineering and Mechanics
, vol.17
, pp. 767-788
-
-
Rajendran, S.1
Subramanian, S.2
-
21
-
-
28444482797
-
A quadratic plane triangular element immune to quadratic mesh distortions under quackatic displacement fields
-
Liew KM, Rajendran S, Wang J. A quadratic plane triangular element immune to quadratic mesh distortions under quackatic displacement fields. Computer Methods in Applied Mechanics and Engineering 2006; 195:1207-1233.
-
(2006)
Computer Methods in Applied Mechanics and Engineering
, vol.195
, pp. 1207-1233
-
-
Liew, K.M.1
Rajendran, S.2
Wang, J.3
-
23
-
-
0033716321
-
Completeness requirements of shape functions for higher order elements
-
Rajendran S, Liew KM. Completeness requirements of shape functions for higher order elements. Structural Engineering and Mechanics 2000; 10:93-110.
-
(2000)
Structural Engineering and Mechanics
, vol.10
, pp. 93-110
-
-
Rajendran, S.1
Liew, K.M.2
|