메뉴 건너뛰기




Volumn 3, Issue , 2008, Pages 1265-1270

Hierarchical takagi-sugeno type fuzzy system for diabetes mellitus forecasting

Author keywords

ANFIS structure; Backpropagation algorithm; Diabetic mellitus; Hierarchical Takagi Sugeno fuzzy system

Indexed keywords

BACKPROPAGATION; BACKPROPAGATION ALGORITHMS; CONTROL THEORY; CYBERNETICS; DATA HANDLING; FEEDBACK CONTROL; FEEDFORWARD NEURAL NETWORKS; FUZZY INFERENCE; FUZZY SYSTEMS; LEARNING ALGORITHMS; LEARNING SYSTEMS; NEURAL NETWORKS; RADIAL BASIS FUNCTION NETWORKS; ROBOT LEARNING; STATISTICAL TESTS; SUGAR (SUCROSE);

EID: 57749104225     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICMLC.2008.4620599     Document Type: Conference Paper
Times cited : (23)

References (22)
  • 1
    • 0021892282 scopus 로고
    • Fuzzy identification of systems and its application to modeling and control
    • Jan
    • T. Takagi and M. Sugeno, "Fuzzy identification of systems and its application to modeling and control," IEEE Trans. Syst. Man, Cybern., vol. SMC-15, no. 1, pp. 116-132, Jan. 1985.
    • (1985) IEEE Trans. Syst. Man, Cybern , vol.SMC-15 , Issue.1 , pp. 116-132
    • Takagi, T.1    Sugeno, M.2
  • 2
    • 0023209327 scopus 로고
    • Fuzzy model identification and self learning for dynamic systems
    • Jul./Aug
    • C. Xu and Y. Liu, "Fuzzy model identification and self learning for dynamic systems," IEEE Trans. Syst. Man, Cybern., vol. SMC-17, pp. 683-689, Jul./Aug. 1987.
    • (1987) IEEE Trans. Syst. Man, Cybern , vol.SMC-17 , pp. 683-689
    • Xu, C.1    Liu, Y.2
  • 3
    • 0034174121 scopus 로고    scopus 로고
    • Theory and application of a novel fuzzy PID controller using a simplified Takagi-Sugeno rule scheme
    • H. Ying, "Theory and application of a novel fuzzy PID controller using a simplified Takagi-Sugeno rule scheme," Inf. Sci., vol. 123, no. 3-4, pp. 281-293, 2000.
    • (2000) Inf. Sci , vol.123 , Issue.3-4 , pp. 281-293
    • Ying, H.1
  • 4
    • 0033177739 scopus 로고    scopus 로고
    • Fuzzy local linearization and logic basis function expansion in nonlinear system modeling
    • Aug
    • Q. Gan and C. J. Harris, "Fuzzy local linearization and logic basis function expansion in nonlinear system modeling," IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 29, no. 4, pp. 559-565, Aug. 1999.
    • (1999) IEEE Trans. Syst., Man, Cybern. B, Cybern , vol.29 , Issue.4 , pp. 559-565
    • Gan, Q.1    Harris, C.J.2
  • 5
    • 0033114942 scopus 로고    scopus 로고
    • Implementation of evolutionary fuzzy systems
    • Apr
    • Y. Shi, R. Eberhart, and Y. chen, "Implementation of evolutionary fuzzy systems," IEEE Trans. Fuzzy Syst., vol. 7, no. 2, pp. 109-119, Apr. 1999.
    • (1999) IEEE Trans. Fuzzy Syst , vol.7 , Issue.2 , pp. 109-119
    • Shi, Y.1    Eberhart, R.2    chen, Y.3
  • 6
    • 0038270111 scopus 로고    scopus 로고
    • Fuzzy system identification using an adaptive learning rule with terminal attractors
    • C. -K. Lin and S.-D. Wang, "Fuzzy system identification using an adaptive learning rule with terminal attractors," J. Fuzzy Sets Syst., pp. 343-352, 1999.
    • (1999) J. Fuzzy Sets Syst , pp. 343-352
    • Lin, C.-K.1    Wang, S.-D.2
  • 7
    • 0033891209 scopus 로고    scopus 로고
    • Evolutionary design of fuzzy rule base for nonlinear system modeling and control
    • Feb
    • S. -J. Kang, C. -H. Woo, H. -S. Hwang, and K. B. Woo, "Evolutionary design of fuzzy rule base for nonlinear system modeling and control," IEEE Trans. Fuzzy Syst., vol. 8, no. 1, pp. 37-45, Feb. 2000.
    • (2000) IEEE Trans. Fuzzy Syst , vol.8 , Issue.1 , pp. 37-45
    • Kang, S.-J.1    Woo, C.-H.2    Hwang, H.-S.3    Woo, K.B.4
  • 8
    • 0000355374 scopus 로고    scopus 로고
    • Designing a fuzzy model by adaptive macroevolution genetic algorithms
    • Y. -P. Huang and S. -F. Wang, "Designing a fuzzy model by adaptive macroevolution genetic algorithms," Fuzzy Sets Syst., vol. 113, pp. 367-379, 2000.
    • (2000) Fuzzy Sets Syst , vol.113 , pp. 367-379
    • Huang, Y.-P.1    Wang, S.-F.2
  • 9
    • 0033078158 scopus 로고    scopus 로고
    • A new method for constructing membership functions and fuzzy rules from training examples
    • Feb
    • T. P.Wu and S. M. Chen, "A new method for constructing membership functions and fuzzy rules from training examples," IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 29, no. 1, pp. 25-40, Feb. 1999.
    • (1999) IEEE Trans. Syst., Man, Cybern. B, Cybern , vol.29 , Issue.1 , pp. 25-40
    • Wu, T.P.1    Chen, S.M.2
  • 11
    • 57749100858 scopus 로고    scopus 로고
    • T. Ohtani, H. Ichihashi, K. Nagasaka and T. Miyoshi: Function Approximation by Neurofuzzy GMDH with Error Backpropagation Learning; J. of Japan Industrial Management Association, 47, No. 6, pp. 384-392, 1997.
    • T. Ohtani, H. Ichihashi, K. Nagasaka and T. Miyoshi: Function Approximation by Neurofuzzy GMDH with Error Backpropagation Learning; J. of Japan Industrial Management Association, Vol. 47, No. 6, pp. 384-392, 1997.
  • 12
    • 0027601884 scopus 로고
    • ANFIS: Adaptive Network-Based Fuzzy Inference System
    • Man and Cybernetics, May/June
    • Jyh-Shing Roger Jang, "ANFIS: Adaptive Network-Based Fuzzy Inference System", IEEE Trans. Sys.,Man and Cybernetics., Vol. 23, No.3, May/June 1993.
    • (1993) IEEE Trans. Sys , vol.23 , Issue.3
    • Roger Jang, J.-S.1
  • 13
    • 0015142058 scopus 로고
    • Polynomial Theory of Complex Systems
    • A. G. Ivakhneko, Polynomial Theory of Complex Systems. IEEE Trans. Sys. Man and Cybem., Vol. SMC-1, No. 4, pp. 364-378, 1971.
    • (1971) IEEE Trans. Sys. Man and Cybem , vol.SMC-1 , Issue.4 , pp. 364-378
    • Ivakhneko, A.G.1
  • 14
    • 0000672424 scopus 로고
    • Fast Learning in Networks of Locally-Tuned Processing Unit
    • J. Moody and C. J. Darken: Fast Learning in Networks of Locally-Tuned Processing Unit, Neural Computation, Vol. 1, No. 2, pp. 281-294, 1989.
    • (1989) Neural Computation , vol.1 , Issue.2 , pp. 281-294
    • Moody, J.1    Darken, C.J.2
  • 15
    • 0002773313 scopus 로고
    • Learning with Localized Receptive Fields
    • Connectionist Models Summer School
    • J. Moody and C. J. Darken: Learning with Localized Receptive Fields, Proc. of the 1988 Connectionist Models Summer School, 1988.
    • (1988) Proc. of the
    • Moody, J.1    Darken, C.J.2
  • 16
    • 0021892282 scopus 로고
    • Fuzzy identification of systems and its application to modeling and control
    • Jan
    • T. Takagi and M. Sugeno, "Fuzzy identification of systems and its application to modeling and control," IEEE Trans. Syst. Man, Cybern., vol. SMC-15, no. 1, pp. 116-132, Jan. 1985.
    • (1985) IEEE Trans. Syst. Man, Cybern , vol.SMC-15 , Issue.1 , pp. 116-132
    • Takagi, T.1    Sugeno, M.2
  • 17
    • 57749114249 scopus 로고    scopus 로고
    • R. Babuska, Fuzzy modeling and identification, Ph.D. dissertation, Univ. Delft, Delft, The Netherlands, 1996.
    • R. Babuska, "Fuzzy modeling and identification," Ph.D. dissertation, Univ. Delft, Delft, The Netherlands, 1996.
  • 18
    • 0742272554 scopus 로고    scopus 로고
    • An approach to online identification of Takagi-Sugeno fuzzy models
    • Feb
    • P. Angelov and D. Filev, "An approach to online identification of Takagi-Sugeno fuzzy models," IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 34, no. 1, pp. 484-498, Feb. 2004.
    • (2004) IEEE Trans. Syst., Man, Cybern. B, Cybern , vol.34 , Issue.1 , pp. 484-498
    • Angelov, P.1    Filev, D.2
  • 19
    • 0036530967 scopus 로고    scopus 로고
    • DENFIS: Dynamic, evolving neural-fuzzy inference system and its application for time-series prediction
    • Feb
    • N. Kasabov and Q. Song, "DENFIS: Dynamic, evolving neural-fuzzy inference system and its application for time-series prediction," IEEE Trans. Fuzzy Syst., vol. 10, no. 1, pp. 144-154, Feb. 2002.
    • (2002) IEEE Trans. Fuzzy Syst , vol.10 , Issue.1 , pp. 144-154
    • Kasabov, N.1    Song, Q.2
  • 21
    • 19644373975 scopus 로고    scopus 로고
    • Intelligent Learning of Fuzzy Logic Controllers via Neural Network and Genetic Algorithm
    • Denver, Colorado, July 19-2
    • Manish Kumar, Devendra P. Garg "Intelligent Learning of Fuzzy Logic Controllers via Neural Network and Genetic Algorithm", Proceedings of2004 JUSFA 2004 Japan - USA Symposium on Flexible Automation Denver, Colorado, July 19-2 1, 2004.
    • Proceedings of2004 JUSFA 2004 Japan - USA Symposium on Flexible Automation , vol.1 , pp. 2004
    • Kumar, M.1    Garg, D.P.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.