메뉴 건너뛰기




Volumn 3, Issue , 2008, Pages 1415-1420

Feature selection for activity recognition in multi-robot domains

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE; BIONICS; CONTENT BASED RETRIEVAL; IMAGE SEGMENTATION; INDUSTRIAL ROBOTS; MULTIPURPOSE ROBOTS; ROBOTICS;

EID: 57749096979     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (19)

References (18)
  • 2
    • 0031334221 scopus 로고    scopus 로고
    • Selection of relevant features and examples in machine learning
    • Blum, A., and Langley, P. 1997. Selection of relevant features and examples in machine learning. Artificial Intelligence 97(1-2):245-271.
    • (1997) Artificial Intelligence , vol.97 , Issue.1-2 , pp. 245-271
    • Blum, A.1    Langley, P.2
  • 3
    • 84899857463 scopus 로고    scopus 로고
    • CMDragons: Dynamic Passing and Strategy on a Champion Robot Soccer Team
    • Bruce, J. R.; Veloso, M.; and Zickler, S. 2008. CMDragons: Dynamic Passing and Strategy on a Champion Robot Soccer Team. In Proceedings of ICRA '2008.
    • (2008) Proceedings of ICRA '2008
    • Bruce, J.R.1    Veloso, M.2    Zickler, S.3
  • 5
    • 0346450316 scopus 로고    scopus 로고
    • Automated robot behavior recognition applied to robotic soccer
    • Hollerbach, J, and Koditschek, D, eds, London: Springer-Verlag
    • Han, K., and Veloso, M. 2000. Automated robot behavior recognition applied to robotic soccer. In Hollerbach, J., and Koditschek, D., eds., Robotics Research: the Ninth International Symposium. London: Springer-Verlag. 199-204.
    • (2000) Robotics Research: The Ninth International Symposium , pp. 199-204
    • Han, K.1    Veloso, M.2
  • 7
    • 0003979126 scopus 로고    scopus 로고
    • Kitano, H, ed, London, UK: Springer-Verlag
    • Kitano, H., ed. 1998. RoboCup-97: Robot Soccer World Cup I. London, UK: Springer-Verlag.
    • (1998) RoboCup-97: Robot Soccer World Cup I
  • 8
    • 51349091754 scopus 로고    scopus 로고
    • An interior-point method for large-scale 11-regularized logistic regression
    • Koh, K.; Kim, S.; and Boyd, S. 2006. An interior-point method for large-scale 11-regularized logistic regression. Under Submission.
    • (2006) Under Submission
    • Koh, K.1    Kim, S.2    Boyd, S.3
  • 9
    • 0142192295 scopus 로고    scopus 로고
    • Conditional random fields: Probabilistic models for segmenting and labeling sequence data
    • Morgan Kaufmann, San Francisco, CA
    • Lafferty, J.; McCallum, A.; and Pereira, F. 2001. Conditional random fields: Probabilistic models for segmenting and labeling sequence data. In Proc. 18th International Conf. on Machine Learning, 282-289. Morgan Kaufmann, San Francisco, CA.
    • (2001) Proc. 18th International Conf. on Machine Learning , pp. 282-289
    • Lafferty, J.1    McCallum, A.2    Pereira, F.3
  • 10
    • 84880885580 scopus 로고    scopus 로고
    • Training conditional random fields using virtual evidence boosting
    • Liao, L.; Choudhury, T.; Fox, D.; and Kautz, H. 2007. Training conditional random fields using virtual evidence boosting. In IJCAI, 2530-2535.
    • (2007) IJCAI , pp. 2530-2535
    • Liao, L.1    Choudhury, T.2    Fox, D.3    Kautz, H.4
  • 12
    • 0002425879 scopus 로고    scopus 로고
    • Loopy belief propagation for approximate inference: An empirical study
    • Murphy, K.; Weiss, Y.; and Jordan, M. 1999. Loopy belief propagation for approximate inference: An empirical study. Proceedings of Uncertainty in AI 467-475.
    • (1999) Proceedings of Uncertainty in AI , pp. 467-475
    • Murphy, K.1    Weiss, Y.2    Jordan, M.3
  • 13
    • 59549087165 scopus 로고    scopus 로고
    • On discriminative vs. generative classifiers: A comparison of logistic regression and naive bayes
    • Dietterich, T. G, Becker, S, and Ghahramani, Z, eds, Cambridge, MA: MIT Press
    • Ng, A. Y., and Jordan, M. I. 2002. On discriminative vs. generative classifiers: A comparison of logistic regression and naive bayes. In Dietterich, T. G.; Becker, S.; and Ghahramani, Z., eds., Advances in Neural Information Processing Systems 14, 841-848. Cambridge, MA: MIT Press.
    • (2002) Advances in Neural Information Processing Systems 14 , pp. 841-848
    • Ng, A.Y.1    Jordan, M.I.2
  • 14
    • 1942418470 scopus 로고    scopus 로고
    • Grafting: Fast, incremental feature selection by gradient descent in function space
    • Perkins, S.; Lacker, K.; and Theiler, J. 2003. Grafting: fast, incremental feature selection by gradient descent in function space. The Journal of Machine Learning Research 3:1333-1356.
    • (2003) The Journal of Machine Learning Research , vol.3 , pp. 1333-1356
    • Perkins, S.1    Lacker, K.2    Theiler, J.3
  • 15
    • 33750032384 scopus 로고    scopus 로고
    • An introduction to conditional random fields for relational learning
    • Getoor, L, and Taskar, B, eds, MIT Press
    • Sutton, C., and McCallum, A. 2006. An introduction to conditional random fields for relational learning. In Getoor, L., and Taskar, B., eds., Introduction to Statistical Relational Learning. MIT Press.
    • (2006) Introduction to Statistical Relational Learning
    • Sutton, C.1    McCallum, A.2
  • 16
    • 33947615175 scopus 로고    scopus 로고
    • Dynamic conditional random fields: Factorized probabilistic models for labeling and segmenting sequence data
    • Sutton, C.; McCallum, A.; and Rohanimanesh, K. 2007. Dynamic conditional random fields: Factorized probabilistic models for labeling and segmenting sequence data. The Journal of Machine Learning Research 8:693-723.
    • (2007) The Journal of Machine Learning Research , vol.8 , pp. 693-723
    • Sutton, C.1    McCallum, A.2    Rohanimanesh, K.3
  • 18
    • 84856105124 scopus 로고    scopus 로고
    • Conditional random fields for activity recogntion
    • Vail, D. L.; Veloso, M. M.; and Lafferty, J. D. 2007. Conditional random fields for activity recogntion. In AAMAS.
    • (2007) AAMAS
    • Vail, D.L.1    Veloso, M.M.2    Lafferty, J.D.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.