메뉴 건너뛰기




Volumn 179, Issue 5, 2009, Pages 542-558

Diversity of ability and cognitive style for group decision processes

Author keywords

Ability diversity; Bankruptcy detection; Cognitive diversity; Multi agent group decisions

Indexed keywords

ERRORS; MULTI AGENT SYSTEMS;

EID: 57649184377     PISSN: 00200255     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ins.2008.10.028     Document Type: Article
Times cited : (42)

References (75)
  • 1
    • 27144546980 scopus 로고    scopus 로고
    • Improved classification of medical data using abductive network committees trained on different feature subsets
    • Abdel-Aal R. Improved classification of medical data using abductive network committees trained on different feature subsets. Computer Methods and Programs in Biomedicine 80 2 (2005) 141-153
    • (2005) Computer Methods and Programs in Biomedicine , vol.80 , Issue.2 , pp. 141-153
    • Abdel-Aal, R.1
  • 2
    • 84980104458 scopus 로고
    • Financial rations discriminant analysis and the prediction of corporate bankruptcy
    • Altman E. Financial rations discriminant analysis and the prediction of corporate bankruptcy. Journal of Finance 23 (1968) 589-609
    • (1968) Journal of Finance , vol.23 , pp. 589-609
    • Altman, E.1
  • 3
    • 43949151078 scopus 로고
    • Corporate distress diagnosis: comparisons using linear discriminant analysis and neural networks (the Italian experience)
    • Altman E., Marco G., and Varetto F. Corporate distress diagnosis: comparisons using linear discriminant analysis and neural networks (the Italian experience). Journal of Banking and Finance 18 (1994) 505-529
    • (1994) Journal of Banking and Finance , vol.18 , pp. 505-529
    • Altman, E.1    Marco, G.2    Varetto, F.3
  • 4
    • 0032645080 scopus 로고    scopus 로고
    • An empirical comparison of voting classification algorithms: bagging, boosting, and variants
    • Bauer E., and Kohavi R. An empirical comparison of voting classification algorithms: bagging, boosting, and variants. Machine Learning 36 1-2 (1999) 105-139
    • (1999) Machine Learning , vol.36 , Issue.1-2 , pp. 105-139
    • Bauer, E.1    Kohavi, R.2
  • 5
    • 33744958288 scopus 로고    scopus 로고
    • Nearest neighbor classification from multiple feature subset
    • Bay S. Nearest neighbor classification from multiple feature subset. Intelligent Data Analysis 3 (1999) 191-209
    • (1999) Intelligent Data Analysis , vol.3 , pp. 191-209
    • Bay, S.1
  • 6
    • 0032665853 scopus 로고    scopus 로고
    • Qualitative company performance evaluation: linear discriminant analysis and neural network models
    • Bertels K., Jacques J., Neuberg L., and Gatot L. Qualitative company performance evaluation: linear discriminant analysis and neural network models. European Journal of Operational Research 115 (1999) 608-615
    • (1999) European Journal of Operational Research , vol.115 , pp. 608-615
    • Bertels, K.1    Jacques, J.2    Neuberg, L.3    Gatot, L.4
  • 7
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman L. Bagging predictors. Machine Learning 26 (1996) 123-140
    • (1996) Machine Learning , vol.26 , pp. 123-140
    • Breiman, L.1
  • 8
    • 0034276320 scopus 로고    scopus 로고
    • Randomizing outputs to increase prediction accuracy
    • Breiman L. Randomizing outputs to increase prediction accuracy. Machine Learning 40 3 (2000) 229-242
    • (2000) Machine Learning , vol.40 , Issue.3 , pp. 229-242
    • Breiman, L.1
  • 9
    • 0031372229 scopus 로고    scopus 로고
    • A case study in applying neural networks to predicting insolvency for property casualty insurers
    • Brockett P., Cooper W., Golden L., and Xia X. A case study in applying neural networks to predicting insolvency for property casualty insurers. Journal of the Operational Research Society 48 (1997) 1153-1162
    • (1997) Journal of the Operational Research Society , vol.48 , pp. 1153-1162
    • Brockett, P.1    Cooper, W.2    Golden, L.3    Xia, X.4
  • 10
    • 10444221886 scopus 로고    scopus 로고
    • Diversity creation methods: a survey and categorization
    • Brown G., Wyatt J., Harris R., and Yao X. Diversity creation methods: a survey and categorization. Information Fusion 6 1 (2005) 5-20
    • (2005) Information Fusion , vol.6 , Issue.1 , pp. 5-20
    • Brown, G.1    Wyatt, J.2    Harris, R.3    Yao, X.4
  • 11
    • 33845444039 scopus 로고    scopus 로고
    • Computationally intelligent agents in economics and finance
    • Chen S. Computationally intelligent agents in economics and finance. Information Sciences 177 (2007) 1153-1168
    • (2007) Information Sciences , vol.177 , pp. 1153-1168
    • Chen, S.1
  • 12
    • 0033900205 scopus 로고    scopus 로고
    • Ensemble of structure-adaptive self-organizing maps for high performance classification
    • Cho S. Ensemble of structure-adaptive self-organizing maps for high performance classification. Information Sciences 123 1-2 (2000) 103-114
    • (2000) Information Sciences , vol.123 , Issue.1-2 , pp. 103-114
    • Cho, S.1
  • 13
    • 0041501047 scopus 로고
    • A neural network approach to forecasting financial distress
    • Winter
    • Coats P., and Fant L. A neural network approach to forecasting financial distress. Journal of Business Forecasting (1992) 9-12 Winter
    • (1992) Journal of Business Forecasting , pp. 9-12
    • Coats, P.1    Fant, L.2
  • 14
    • 0034333684 scopus 로고    scopus 로고
    • Stability problems with artificial neural networks and the ensemble solution
    • Cunningham P., Carney J., and Jacob S. Stability problems with artificial neural networks and the ensemble solution. Artificial Intelligence in Medicine 20 (2000) 217-225
    • (2000) Artificial Intelligence in Medicine , vol.20 , pp. 217-225
    • Cunningham, P.1    Carney, J.2    Jacob, S.3
  • 15
    • 0033117345 scopus 로고    scopus 로고
    • The application of a neural network approach to predicting bankruptcy risks facing the major US air carriers: 1979-1996
    • Davalos S., Gritta R., and Chow G. The application of a neural network approach to predicting bankruptcy risks facing the major US air carriers: 1979-1996. Journal of Air Transport Management 5 (1999) 81-86
    • (1999) Journal of Air Transport Management , vol.5 , pp. 81-86
    • Davalos, S.1    Gritta, R.2    Chow, G.3
  • 16
    • 0030291564 scopus 로고    scopus 로고
    • A comparison of neural networks and linear scoring models in the credit union environment
    • Desai V., Crook J., and Overstreet G. A comparison of neural networks and linear scoring models in the credit union environment. European Journal of Operational Research 95 (1996) 24-37
    • (1996) European Journal of Operational Research , vol.95 , pp. 24-37
    • Desai, V.1    Crook, J.2    Overstreet, G.3
  • 17
    • 0034250160 scopus 로고    scopus 로고
    • Experimental comparison of three methods for constructing ensembles of decision trees: bagging, boosting, and randomization
    • Dietterich T. Experimental comparison of three methods for constructing ensembles of decision trees: bagging, boosting, and randomization. Machine Learning 40 2 (2000) 139-157
    • (2000) Machine Learning , vol.40 , Issue.2 , pp. 139-157
    • Dietterich, T.1
  • 19
    • 0034243832 scopus 로고    scopus 로고
    • Bootstrapping neural networks
    • Franke J. Bootstrapping neural networks. Neural Computation 12 (2000) 1929-1949
    • (2000) Neural Computation , vol.12 , pp. 1929-1949
    • Franke, J.1
  • 20
    • 0030270417 scopus 로고    scopus 로고
    • An improved method for developing neural networks: the case of evaluating commercial loan creditworthiness
    • Glorfeld L., and Hardgrave B. An improved method for developing neural networks: the case of evaluating commercial loan creditworthiness. Computers and Operations Research 23 (1996) 933-944
    • (1996) Computers and Operations Research , vol.23 , pp. 933-944
    • Glorfeld, L.1    Hardgrave, B.2
  • 22
    • 0033207482 scopus 로고    scopus 로고
    • Combining predictors: comparison of five meta machine learning methods
    • Hansen J. Combining predictors: comparison of five meta machine learning methods. Information Sciences 119 1-2 (1999) 91-105
    • (1999) Information Sciences , vol.119 , Issue.1-2 , pp. 91-105
    • Hansen, J.1
  • 23
    • 0036208184 scopus 로고    scopus 로고
    • Combining neural network predictions for medical diagnosis
    • Hayashi Y., and Setiono R. Combining neural network predictions for medical diagnosis. Computers in Biology and Medicine 32 (2002) 237-246
    • (2002) Computers in Biology and Medicine , vol.32 , pp. 237-246
    • Hayashi, Y.1    Setiono, R.2
  • 24
    • 9244255265 scopus 로고    scopus 로고
    • Groups of diverse problem solvers can outperform groups of high-ability problem solvers
    • Hong L., and Page S. Groups of diverse problem solvers can outperform groups of high-ability problem solvers. Proceeding of the National Academy of Science 101 46 (2004) 16385-16389
    • (2004) Proceeding of the National Academy of Science , vol.101 , Issue.46 , pp. 16385-16389
    • Hong, L.1    Page, S.2
  • 25
    • 0031199479 scopus 로고    scopus 로고
    • Bankruptcy prediction using case-based reasoning, neural networks, and discriminant analysis
    • Hongkyu J., Ingoo H., and Hoonyoung L. Bankruptcy prediction using case-based reasoning, neural networks, and discriminant analysis. Expert Systems With Applications 13 (1997) 97-108
    • (1997) Expert Systems With Applications , vol.13 , pp. 97-108
    • Hongkyu, J.1    Ingoo, H.2    Hoonyoung, L.3
  • 26
    • 0037401696 scopus 로고    scopus 로고
    • Explaining consumer choice through neural networks: the stacked generalization approach
    • Hu M., and Tsoukalas C. Explaining consumer choice through neural networks: the stacked generalization approach. European Journal of Operational Research 146 (2003) 650-660
    • (2003) European Journal of Operational Research , vol.146 , pp. 650-660
    • Hu, M.1    Tsoukalas, C.2
  • 27
    • 2442665617 scopus 로고    scopus 로고
    • Credit rating analysis with support vector machines and neural networks: a market comparative study
    • Huang Z., Chen H., Hsu C., Chen W., and Wu S. Credit rating analysis with support vector machines and neural networks: a market comparative study. Decision Support Systems 37 (2004) 543-558
    • (2004) Decision Support Systems , vol.37 , pp. 543-558
    • Huang, Z.1    Chen, H.2    Hsu, C.3    Chen, W.4    Wu, S.5
  • 28
    • 0142025124 scopus 로고    scopus 로고
    • Constructing support vector machine ensemble
    • Kim H., Pang S., Je H., Kim D., and Yang Bang S. Constructing support vector machine ensemble. Pattern Recognition 36 12 (2003) 2757-2767
    • (2003) Pattern Recognition , vol.36 , Issue.12 , pp. 2757-2767
    • Kim, H.1    Pang, S.2    Je, H.3    Kim, D.4    Yang Bang, S.5
  • 29
    • 33750366183 scopus 로고    scopus 로고
    • Ensemble classifiers based on correlation analysis for DNA microarray classification
    • Kim K., and Cho S. Ensemble classifiers based on correlation analysis for DNA microarray classification. Neurocomputing 70 1-3 (2006) 187-199
    • (2006) Neurocomputing , vol.70 , Issue.1-3 , pp. 187-199
    • Kim, K.1    Cho, S.2
  • 30
    • 29144445856 scopus 로고    scopus 로고
    • Toward a successful CRM: variable selection, sampling, and ensemble
    • Kim Y. Toward a successful CRM: variable selection, sampling, and ensemble. Decision Support Systems 41 2 (2006) 542-553
    • (2006) Decision Support Systems , vol.41 , Issue.2 , pp. 542-553
    • Kim, Y.1
  • 31
    • 0033075132 scopus 로고    scopus 로고
    • On the boosting ability of top-down decision tree learning algorithms
    • Kearns M., and Mansour Y. On the boosting ability of top-down decision tree learning algorithms. Journal of Computer and System Sciences 58 1 (1999) 109-128
    • (1999) Journal of Computer and System Sciences , vol.58 , Issue.1 , pp. 109-128
    • Kearns, M.1    Mansour, Y.2
  • 33
    • 41849133087 scopus 로고    scopus 로고
    • Conditions that obviate the no-free-lunch theorems for optimization
    • Koehler G. Conditions that obviate the no-free-lunch theorems for optimization. INFORMS Journal on Computing 19 (2007) 273-280
    • (2007) INFORMS Journal on Computing , vol.19 , pp. 273-280
    • Koehler, G.1
  • 34
    • 85054435084 scopus 로고
    • Neural network ensembles, cross validation, and active learning
    • Krogh A., and Vedelsby J. Neural network ensembles, cross validation, and active learning. NIPS 7 (1995) 231-238
    • (1995) NIPS , vol.7 , pp. 231-238
    • Krogh, A.1    Vedelsby, J.2
  • 35
    • 0030241497 scopus 로고    scopus 로고
    • Hybrid neural network models for bankruptcy predictions
    • Kun C., Ingoo H., and Youngsig K. Hybrid neural network models for bankruptcy predictions. Decision Support Systems 18 (1996) 63-72
    • (1996) Decision Support Systems , vol.18 , pp. 63-72
    • Kun, C.1    Ingoo, H.2    Youngsig, K.3
  • 37
    • 0030241497 scopus 로고    scopus 로고
    • Hybrid neural network models for bankruptcy predictions
    • Lee K., Han I., and Kwon Y. Hybrid neural network models for bankruptcy predictions. Decision Support Systems 18 (1996) 63-72
    • (1996) Decision Support Systems , vol.18 , pp. 63-72
    • Lee, K.1    Han, I.2    Kwon, Y.3
  • 39
    • 0344444365 scopus 로고    scopus 로고
    • Model selection for medical diagnosis decision support systems
    • Mangiameli P., West D., and Rampal R. Model selection for medical diagnosis decision support systems. Decision Support Systems 36 (2004) 247-259
    • (2004) Decision Support Systems , vol.36 , pp. 247-259
    • Mangiameli, P.1    West, D.2    Rampal, R.3
  • 40
    • 10444259853 scopus 로고    scopus 로고
    • Creating diversity in ensembles using artificial data
    • Melville P., and Mooney R. Creating diversity in ensembles using artificial data. Information Fusion 6 (2005) 99-111
    • (2005) Information Fusion , vol.6 , pp. 99-111
    • Melville, P.1    Mooney, R.2
  • 43
    • 27844601116 scopus 로고    scopus 로고
    • Modeling the concept of majority opinion in group decision making
    • Pasi G., and Yager R. Modeling the concept of majority opinion in group decision making. Information Sciences 176 4 (2006) 390-414
    • (2006) Information Sciences , vol.176 , Issue.4 , pp. 390-414
    • Pasi, G.1    Yager, R.2
  • 45
    • 33947495776 scopus 로고    scopus 로고
    • The theory and experiments of designing cooperative intelligent systems
    • Pendharkar P. The theory and experiments of designing cooperative intelligent systems. Decision Support Systems 43 (2007) 1014-1030
    • (2007) Decision Support Systems , vol.43 , pp. 1014-1030
    • Pendharkar, P.1
  • 46
    • 0032749972 scopus 로고    scopus 로고
    • Financial credit-risk evaluation with neural and neurofuzzy systems
    • Piramuthu S. Financial credit-risk evaluation with neural and neurofuzzy systems. European Journal of Operational Research 112 (1999) 310-321
    • (1999) European Journal of Operational Research , vol.112 , pp. 310-321
    • Piramuthu, S.1
  • 47
    • 0030374103 scopus 로고    scopus 로고
    • Bootstrapping with noise: an effective regularization technique
    • Raviv Y., and Intrator N. Bootstrapping with noise: an effective regularization technique. Connection Science 8 (1996) 355-372
    • (1996) Connection Science , vol.8 , pp. 355-372
    • Raviv, Y.1    Intrator, N.2
  • 48
  • 49
    • 84988828223 scopus 로고
    • Neural networks: a new tool for predicting thrift failures
    • Salchenberger L., Cianr E., and Lash N. Neural networks: a new tool for predicting thrift failures. Decision Sciences 23 (1992) 899-916
    • (1992) Decision Sciences , vol.23 , pp. 899-916
    • Salchenberger, L.1    Cianr, E.2    Lash, N.3
  • 50
    • 0034243471 scopus 로고    scopus 로고
    • Boosting neural networks
    • Schwenk H., and Bengio Y. Boosting neural networks. Neural Computation 12 (2000) 1869-1887
    • (2000) Neural Computation , vol.12 , pp. 1869-1887
    • Schwenk, H.1    Bengio, Y.2
  • 51
    • 0004398518 scopus 로고    scopus 로고
    • Feedforward neural networks in the classification of financial information
    • Serrano-Cinca C. Feedforward neural networks in the classification of financial information. European Journal of Finance 3 (1997) 183-202
    • (1997) European Journal of Finance , vol.3 , pp. 183-202
    • Serrano-Cinca, C.1
  • 52
    • 0030190036 scopus 로고    scopus 로고
    • Self organizing neural networks for financial diagnosis
    • Serrano-Cinca C. Self organizing neural networks for financial diagnosis. Decision Support Systems 17 (1996) 227-238
    • (1996) Decision Support Systems , vol.17 , pp. 227-238
    • Serrano-Cinca, C.1
  • 53
    • 0032208797 scopus 로고    scopus 로고
    • A multi-agent framework for the coordination and integration of information systems
    • Sikora R., and Shaw M. A multi-agent framework for the coordination and integration of information systems. Management Science 44 11 (1998) 65-78
    • (1998) Management Science , vol.44 , Issue.11 , pp. 65-78
    • Sikora, R.1    Shaw, M.2
  • 54
    • 0032121371 scopus 로고    scopus 로고
    • Bagging for linear classifiers
    • Skurichina M., and Duin R. Bagging for linear classifiers. Pattern Recognition 31 7 (1998) 909-930
    • (1998) Pattern Recognition , vol.31 , Issue.7 , pp. 909-930
    • Skurichina, M.1    Duin, R.2
  • 55
    • 0037290189 scopus 로고    scopus 로고
    • Data fusion ensemble and clustering to improve the classification accuracy for the severity of road traffic accidents in Korea
    • Sohn S., and Lee S. Data fusion ensemble and clustering to improve the classification accuracy for the severity of road traffic accidents in Korea. Safety Science 41 (2003) 1-14
    • (2003) Safety Science , vol.41 , pp. 1-14
    • Sohn, S.1    Lee, S.2
  • 56
    • 84997479670 scopus 로고
    • Managerial applications of neural networks: the case of bank failure predictions
    • Tam F., and Kiang M. Managerial applications of neural networks: the case of bank failure predictions. Management Science 38 (1992) 926-947
    • (1992) Management Science , vol.38 , pp. 926-947
    • Tam, F.1    Kiang, M.2
  • 57
    • 30944461783 scopus 로고    scopus 로고
    • Bankruptcy prediction with neural logic networks by means of grammar-guided genetic programming
    • Tsakonas A., Dounias G., Doumpos M., and Zopounidis C. Bankruptcy prediction with neural logic networks by means of grammar-guided genetic programming. Expert Systems with Applications 30 (2006) 449-461
    • (2006) Expert Systems with Applications , vol.30 , pp. 449-461
    • Tsakonas, A.1    Dounias, G.2    Doumpos, M.3    Zopounidis, C.4
  • 59
    • 3242748311 scopus 로고    scopus 로고
    • Predicting the exchange traded fund DIA with a combination of genetic algorithms and neural networks
    • Versace M., Bhatt R., Hinds O., and Shiffer M. Predicting the exchange traded fund DIA with a combination of genetic algorithms and neural networks. Expert Systems with Applications 27 3 (2004) 417-425
    • (2004) Expert Systems with Applications , vol.27 , Issue.3 , pp. 417-425
    • Versace, M.1    Bhatt, R.2    Hinds, O.3    Shiffer, M.4
  • 60
    • 13544268431 scopus 로고    scopus 로고
    • Neural network ensemble strategies for financial decision applications
    • West D., Dellana S., and Qian J. Neural network ensemble strategies for financial decision applications. Computers and Operations Research 32 (2005) 2243-2559
    • (2005) Computers and Operations Research , vol.32 , pp. 2243-2559
    • West, D.1    Dellana, S.2    Qian, J.3
  • 61
    • 9644288159 scopus 로고    scopus 로고
    • Ensemble strategies for a medical diagnostic decision support system: a breast cancer diagnosis application
    • West D., Mangiameli P., Rampal R., and West V. Ensemble strategies for a medical diagnostic decision support system: a breast cancer diagnosis application. European Journal of Operational Research 162 (2005) 532-551
    • (2005) European Journal of Operational Research , vol.162 , pp. 532-551
    • West, D.1    Mangiameli, P.2    Rampal, R.3    West, V.4
  • 62
    • 0034118581 scopus 로고    scopus 로고
    • Neural network credit scoring models
    • West D. Neural network credit scoring models. Computers and Operations Research 27 (2000) 1131-1152
    • (2000) Computers and Operations Research , vol.27 , pp. 1131-1152
    • West, D.1
  • 63
    • 0028444978 scopus 로고
    • Bankruptcy prediction using neural networks
    • Wilson R., and Sharda R. Bankruptcy prediction using neural networks. Decision Support Systems 11 (1994) 545-557
    • (1994) Decision Support Systems , vol.11 , pp. 545-557
    • Wilson, R.1    Sharda, R.2
  • 65
    • 28544448372 scopus 로고    scopus 로고
    • Constructing response model using ensemble based on feature subset selection
    • Yu E., and Cho S. Constructing response model using ensemble based on feature subset selection. Expert Systems with Applications 30 2 (2006) 352-360
    • (2006) Expert Systems with Applications , vol.30 , Issue.2 , pp. 352-360
    • Yu, E.1    Cho, S.2
  • 66
    • 56349095375 scopus 로고    scopus 로고
    • An intelligent-agent-based fuzzy group decision making model for financial multicriteria decision support: the case of credit scoring
    • 10.1016/j.ejor.2007.11.025
    • Yu L., Wang S., and Lai K. An intelligent-agent-based fuzzy group decision making model for financial multicriteria decision support: the case of credit scoring. European Journal of Operational Research (2007) 10.1016/j.ejor.2007.11.025
    • (2007) European Journal of Operational Research
    • Yu, L.1    Wang, S.2    Lai, K.3
  • 67
    • 0033074333 scopus 로고    scopus 로고
    • Probabilistic neural networks in bankruptcy prediction
    • Yang Z., Platt M., and Platt H. Probabilistic neural networks in bankruptcy prediction. Journal of Business Research 44 (1999) 67-74
    • (1999) Journal of Business Research , vol.44 , pp. 67-74
    • Yang, Z.1    Platt, M.2    Platt, H.3
  • 68
    • 0032928495 scopus 로고    scopus 로고
    • Developing robust non-linear models through bootstrap aggregated neural networks
    • Zhang J. Developing robust non-linear models through bootstrap aggregated neural networks. Neurocomputing 25 (1999) 93-113
    • (1999) Neurocomputing , vol.25 , pp. 93-113
    • Zhang, J.1
  • 69
    • 0032640524 scopus 로고    scopus 로고
    • Artificial neural networks in bankruptcy prediction: general framework and cross-validation analysis
    • Zhang G., Hu M., Patuwo B., and Indro D. Artificial neural networks in bankruptcy prediction: general framework and cross-validation analysis. European Journal of Operational Research 116 (1999) 16-32
    • (1999) European Journal of Operational Research , vol.116 , pp. 16-32
    • Zhang, G.1    Hu, M.2    Patuwo, B.3    Indro, D.4
  • 70
    • 34548619946 scopus 로고    scopus 로고
    • A neural network ensemble method with jittered training data for time series forecasting
    • Zhang G. A neural network ensemble method with jittered training data for time series forecasting. Information Sciences 177 23 (2007) 5329-5346
    • (2007) Information Sciences , vol.177 , Issue.23 , pp. 5329-5346
    • Zhang, G.1
  • 71
    • 2442688288 scopus 로고    scopus 로고
    • Genetic programming in classifying large-scale data: an ensemble method
    • Zhang Y., and Bhattacharyya S. Genetic programming in classifying large-scale data: an ensemble method. Information Sciences 163 1-3 (2004) 85-101
    • (2004) Information Sciences , vol.163 , Issue.1-3 , pp. 85-101
    • Zhang, Y.1    Bhattacharyya, S.2
  • 72
    • 0030372928 scopus 로고    scopus 로고
    • Application of several methods of classification fusion to magnetic resonance spectra
    • Zhilkin P., and Somorjai R. Application of several methods of classification fusion to magnetic resonance spectra. Connection Science 8 (1996) 427-442
    • (1996) Connection Science , vol.8 , pp. 427-442
    • Zhilkin, P.1    Somorjai, R.2
  • 73
    • 0031244962 scopus 로고    scopus 로고
    • Improving classifier performance through repeated sampling
    • Zhou J., and Lopresti D. Improving classifier performance through repeated sampling. Pattern Recognition 30 (1997) 1637-1650
    • (1997) Pattern Recognition , vol.30 , pp. 1637-1650
    • Zhou, J.1    Lopresti, D.2
  • 74
    • 0036146402 scopus 로고    scopus 로고
    • Lung cancer cell identification based on artificial neural network ensembles
    • Zhou Z., Jiang Y., Yang Y., and Chen S. Lung cancer cell identification based on artificial neural network ensembles. Artificial Intelligence in Medicine 24 (2002) 25-36
    • (2002) Artificial Intelligence in Medicine , vol.24 , pp. 25-36
    • Zhou, Z.1    Jiang, Y.2    Yang, Y.3    Chen, S.4
  • 75
    • 0011292509 scopus 로고    scopus 로고
    • Neural networks versus logit regression models for predicting financial distress response variables
    • Zurada J., Foster B., Ward T., and Barker R. Neural networks versus logit regression models for predicting financial distress response variables. Journal of Applied Business Research 15 (1998) 21-30
    • (1998) Journal of Applied Business Research , vol.15 , pp. 21-30
    • Zurada, J.1    Foster, B.2    Ward, T.3    Barker, R.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.