메뉴 건너뛰기




Volumn , Issue , 2008, Pages 745-746

Semi-supervised spam filtering: Does it work?

Author keywords

Self feedback; Semi supervised learning; Spam; Transductive learning

Indexed keywords

EDUCATION; IMAGE RETRIEVAL; INFORMATION RETRIEVAL; INFORMATION RETRIEVAL SYSTEMS; INFORMATION SERVICES; INTERNET; RESEARCH AND DEVELOPMENT MANAGEMENT; SPAMMING; SUPPORT VECTOR MACHINES;

EID: 57549112593     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1390334.1390482     Document Type: Conference Paper
Times cited : (9)

References (8)
  • 4
    • 47649124190 scopus 로고    scopus 로고
    • Harnessing unlabeled examples through iterative application of Dynamic Markov Modeling
    • CORMACK, G. V. Harnessing unlabeled examples through iterative application of Dynamic Markov Modeling. In Proc. ECML/PKDD Discovery Challenge Workshop (2006).
    • (2006) Proc. ECML/PKDD Discovery Challenge Workshop
    • CORMACK, G.V.1
  • 7
    • 57549105289 scopus 로고    scopus 로고
    • GOODMAN, J., AND TAU YIH, W. Online discriminative spam filter training. In The Third Conference on Email and Anti-Spam (Mountain View, CA, 2006).
    • GOODMAN, J., AND TAU YIH, W. Online discriminative spam filter training. In The Third Conference on Email and Anti-Spam (Mountain View, CA, 2006).
  • 8
    • 57549102493 scopus 로고    scopus 로고
    • JOACHIMS, T. Making large-scale support vector machine learning practical. In Advances in Kernel Methods: Support Vector Machines, B. Schölkopf, C. Burges, and A. Smola, Eds. MIT Press, 1998.
    • JOACHIMS, T. Making large-scale support vector machine learning practical. In Advances in Kernel Methods: Support Vector Machines, B. Schölkopf, C. Burges, and A. Smola, Eds. MIT Press, 1998.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.