메뉴 건너뛰기




Volumn , Issue , 2008, Pages 95-104

SS-ClusterTree: A subspace clustering based indexing algorithm over high-dimensional image features

Author keywords

Cluster Tree; Index; Retrieval; Subspace cluster

Indexed keywords

ATTRACTION FORCES; CLUSTER STRUCTURES; CLUSTER TREE; CLUSTERING APPROACHES; CLUSTERING DATUM; DATA ITEMS; DATA POINTS; DATA SETS; DOMAIN KNOWLEDGE; HIGH DIMENSIONS; HIGH-DIMENSIONAL IMAGES; IMAGE DATABASE; IMAGE INFORMATIONS; INDEX; INDEX STRUCTURES; INDEXING ALGORITHMS; INTERNAL STRUCTURES; PRIOR KNOWLEDGE; RAPID GROWTHS; RETRIEVAL; SUBSPACE CLUSTER; SUBSPACE CLUSTERING; VIDEO DATUM;

EID: 57549106262     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1386352.1386369     Document Type: Conference Paper
Times cited : (6)

References (19)
  • 1
    • 0141502078 scopus 로고    scopus 로고
    • ClusterTree: Integration of cluster representation and nearest-neighbor search for large data sets with high dimensions[J].IEEE
    • Dantong Yu and Aidong Zhang. ClusterTree: integration of cluster representation and nearest-neighbor search for large data sets with high dimensions[J].IEEE Transactions on Knowledge and Data Engineering. 2003, 15(5):1316-1337.
    • (2003) Transactions on Knowledge and Data Engineering , vol.15 , Issue.5 , pp. 1316-1337
    • Yu, D.1    Zhang, A.2
  • 6
    • 1542381961 scopus 로고    scopus 로고
    • An optimal grid-clustering: Towards breaking the curse of dimensionality in highdimensional clustering
    • Hinneburg, A., Keim, D.A.: An optimal grid-clustering: Towards breaking the curse of dimensionality in highdimensional clustering. The VLDB Journal. 1999. 506-517
    • (1999) The VLDB Journal , pp. 506-517
    • Hinneburg, A.1    Keim, D.A.2
  • 8
    • 2942588997 scopus 로고    scopus 로고
    • Density- Connected Subspace Clustering for High-Dimensional Data
    • Lake Buena Vista,FL
    • Karin Kailing, Hans-Peter Kriegel, Peer Kroger. Density- Connected Subspace Clustering for High-Dimensional Data. In Proc. 4th SIAM Int. Conf. on Data Mining, pp.246-257, Lake Buena Vista,FL,2004
    • (2004) Proc. 4th SIAM Int. Conf. on Data Mining , pp. 246-257
    • Kailing, K.1    Kriegel, H.-P.2    Kroger, P.3
  • 14
    • 57549089920 scopus 로고    scopus 로고
    • Lance Parsons, Ehtesham Haque, Huan Liu. Subspace Clustering for High Dimensional Data: A Review SIGKDD Explorations, Newsletter of the ACM Special Interest Group on Knowledge Discovery and Data Mining, 6(l):90, 2004.
    • Lance Parsons, Ehtesham Haque, Huan Liu. Subspace Clustering for High Dimensional Data: A Review SIGKDD Explorations, Newsletter of the ACM Special Interest Group on Knowledge Discovery and Data Mining, 6(l):90, 2004.
  • 16
    • 57549110882 scopus 로고    scopus 로고
    • Sanjay Goil, H. Nagesh, A. Choudhary. MAFIA: Efficient and Scalable Subspace Clustering Clustering for Very Large Data Sets. Technical Report CPDC-TR-9906-010, Northwestern University, 2145 Sheridan Road, Evanston IL 60208, June 1999
    • Sanjay Goil, H. Nagesh, A. Choudhary. MAFIA: Efficient and Scalable Subspace Clustering Clustering for Very Large Data Sets. Technical Report CPDC-TR-9906-010, Northwestern University, 2145 Sheridan Road, Evanston IL 60208, June 1999
  • 17
    • 0036039291 scopus 로고    scopus 로고
    • A new cell-based clustering method for large, high-dimensional data in data mining applications
    • J.W Chang, D.S.Jin. A new cell-based clustering method for large, high-dimensional data in data mining applications. In Proceedings of the 2002 ACM symposium on Applied computing, pages 503-507. 2002
    • (2002) Proceedings of the 2002 ACM symposium on Applied computing , pp. 503-507
    • Chang, J.W.1    Jin, D.S.2
  • 18
    • 0742324835 scopus 로고    scopus 로고
    • FINDIT: A fast and intelligent subspace clustering algorithm using dimension voting
    • Kyoung-Gu Woo, Jeong-Hoon Lee, Myoung-Ho Kim, Yoon- Joon Lee. FINDIT: a fast and intelligent subspace clustering algorithm using dimension voting. Information & Software Technology, VOL 46(4), 2004, pp 255-271.
    • (2004) Information & Software Technology , vol.46 , Issue.4 , pp. 255-271
    • Woo, K.-G.1    Lee, J.-H.2    Myoung-Ho Kim, Y.3    Lee, J.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.