메뉴 건너뛰기




Volumn 57, Issue 1, 2009, Pages 54-61

P-attracting and p-invariant sets for a class of impulsive stochastic functional differential equations

Author keywords

Impulsive; L operator inequality; P attracting set; P invariant set; Stochastic

Indexed keywords

MATHEMATICAL OPERATORS; NONLINEAR EQUATIONS;

EID: 57449091867     PISSN: 08981221     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.camwa.2008.09.027     Document Type: Article
Times cited : (41)

References (30)
  • 1
    • 0347601658 scopus 로고    scopus 로고
    • Invariant manifolds, global attractors and almost periodic solutions of nonautonomous difference equations
    • Cheban D., and Mammana C. Invariant manifolds, global attractors and almost periodic solutions of nonautonomous difference equations. Nonlinear Anal. 56 (2004) 465-484
    • (2004) Nonlinear Anal. , vol.56 , pp. 465-484
    • Cheban, D.1    Mammana, C.2
  • 2
    • 0035426548 scopus 로고    scopus 로고
    • Asymptotic behavior of nonlinear difference equations with delays
    • Xu D.Y. Asymptotic behavior of nonlinear difference equations with delays. Comput. Math. Appl. 42 (2001) 393-398
    • (2001) Comput. Math. Appl. , vol.42 , pp. 393-398
    • Xu, D.Y.1
  • 3
    • 0038070253 scopus 로고    scopus 로고
    • Invariant and attracting sets of Volterra difference equations with delays
    • Xu D.Y. Invariant and attracting sets of Volterra difference equations with delays. Comput. Math. Appl. 45 (2003) 1311-1317
    • (2003) Comput. Math. Appl. , vol.45 , pp. 1311-1317
    • Xu, D.Y.1
  • 4
    • 0033197432 scopus 로고    scopus 로고
    • Domain of attraction of nonlinear discrete systems with delays
    • Xu D.Y., Li S.Y., Pu Z.L., and Guo Q.Y. Domain of attraction of nonlinear discrete systems with delays. Comput. Math. Appl. 38 (1999) 155-162
    • (1999) Comput. Math. Appl. , vol.38 , pp. 155-162
    • Xu, D.Y.1    Li, S.Y.2    Pu, Z.L.3    Guo, Q.Y.4
  • 5
    • 33748109655 scopus 로고    scopus 로고
    • Existence and persistence of invariant manifold for semiflows in Banach space
    • Bates P., Lu K., and Zeng C. Existence and persistence of invariant manifold for semiflows in Banach space. Mem. Amer. Math. Soc. 645 (1998)
    • (1998) Mem. Amer. Math. Soc. , vol.645
    • Bates, P.1    Lu, K.2    Zeng, C.3
  • 6
    • 0142011694 scopus 로고    scopus 로고
    • On the stability of invariant sets of functional differential equations
    • Bernfeld S.R., Corduneanu C., and Ignatyev A.O. On the stability of invariant sets of functional differential equations. Nonlinear Anal. 55 (2003) 641-656
    • (2003) Nonlinear Anal. , vol.55 , pp. 641-656
    • Bernfeld, S.R.1    Corduneanu, C.2    Ignatyev, A.O.3
  • 9
    • 38649092028 scopus 로고    scopus 로고
    • Positive invariant and global exponential attractive sets of neural networks with time-varying delays
    • Liao X.X., Luo Q., and Zeng Z.G. Positive invariant and global exponential attractive sets of neural networks with time-varying delays. Neurocomputing 71 (2008) 513-518
    • (2008) Neurocomputing , vol.71 , pp. 513-518
    • Liao, X.X.1    Luo, Q.2    Zeng, Z.G.3
  • 11
    • 0000558506 scopus 로고
    • Positively invariant closed sets for systems of delay differential equations
    • Seifert G. Positively invariant closed sets for systems of delay differential equations. J. Differential Equations 22 (1976) 292-304
    • (1976) J. Differential Equations , vol.22 , pp. 292-304
    • Seifert, G.1
  • 12
    • 84972498142 scopus 로고
    • Positively invariant sets for functional differential equations with infinite delay
    • Sawano K. Positively invariant sets for functional differential equations with infinite delay. Tôhoku Math. J. 32 2 (1980) 557-566
    • (1980) Tôhoku Math. J. , vol.32 , Issue.2 , pp. 557-566
    • Sawano, K.1
  • 13
    • 31244437438 scopus 로고    scopus 로고
    • Invariant set and attractivity of nonlinear differential equations with delays
    • Xu D.Y., and Zhao H.Y. Invariant set and attractivity of nonlinear differential equations with delays. Appl. Math. Lett. 15 (2002) 321-325
    • (2002) Appl. Math. Lett. , vol.15 , pp. 321-325
    • Xu, D.Y.1    Zhao, H.Y.2
  • 14
    • 0038455871 scopus 로고    scopus 로고
    • Invariant set and attractor of nonautonomous functional differential systems
    • Zhao H.Y. Invariant set and attractor of nonautonomous functional differential systems. J. Math. Anal. Appl. 282 (2003) 437-443
    • (2003) J. Math. Anal. Appl. , vol.282 , pp. 437-443
    • Zhao, H.Y.1
  • 15
    • 0038349337 scopus 로고    scopus 로고
    • Asymptotic behavior of a class of reaction-diffusion equations with delays
    • Wang L.S., and Xu D.Y. Asymptotic behavior of a class of reaction-diffusion equations with delays. J. Math. Anal. Appl. 281 (2003) 439-453
    • (2003) J. Math. Anal. Appl. , vol.281 , pp. 439-453
    • Wang, L.S.1    Xu, D.Y.2
  • 16
    • 0035373442 scopus 로고    scopus 로고
    • Invariant set and the stable region of a class of partial differential equations with time delays
    • Xu D.Y., L S.Y., Zhou X.P., and Pu Z.L. Invariant set and the stable region of a class of partial differential equations with time delays. Nonlinear Anal. RWA 2 (2001) 161-169
    • (2001) Nonlinear Anal. RWA , vol.2 , pp. 161-169
    • Xu, D.Y.1    L, S.Y.2    Zhou, X.P.3    Pu, Z.L.4
  • 17
    • 60649112674 scopus 로고    scopus 로고
    • Exponential periodic attractor of impulsive BAM networks with finite distributed delays
    • 10.1016/ j.chaos.2007.04.014
    • Huang Z.K., and Xia Y.H. Exponential periodic attractor of impulsive BAM networks with finite distributed delays. Chaos Solitons Fractals (2007) 10.1016/ j.chaos.2007.04.014
    • (2007) Chaos Solitons Fractals
    • Huang, Z.K.1    Xia, Y.H.2
  • 18
    • 43049154404 scopus 로고    scopus 로고
    • On the stability of invariant sets of systems with impulse effect
    • Ignatyev A.O. On the stability of invariant sets of systems with impulse effect. Nonlinear Anal. 69 (2008) 53-72
    • (2008) Nonlinear Anal. , vol.69 , pp. 53-72
    • Ignatyev, A.O.1
  • 19
    • 33846588513 scopus 로고    scopus 로고
    • Attracting and invariant sets for a class of impulsive functional differential equations
    • Xu D.Y., and Yang Z.C. Attracting and invariant sets for a class of impulsive functional differential equations. J. Math. Anal. Appl. 329 (2007) 1036-1044
    • (2007) J. Math. Anal. Appl. , vol.329 , pp. 1036-1044
    • Xu, D.Y.1    Yang, Z.C.2
  • 21
    • 0346961357 scopus 로고    scopus 로고
    • Invariant manifolds for stochastic partial differential equations
    • Duan J.Q., Lu K.N., and Schmalfuss B. Invariant manifolds for stochastic partial differential equations. Ann. Probab. 31 (2003) 2109-2135
    • (2003) Ann. Probab. , vol.31 , pp. 2109-2135
    • Duan, J.Q.1    Lu, K.N.2    Schmalfuss, B.3
  • 22
    • 34247169952 scopus 로고    scopus 로고
    • Invariant manifolds for stochastic wave equations
    • Lu K.N., and Schmalfuß B. Invariant manifolds for stochastic wave equations. J. Differential Equations 236 (2007) 460-492
    • (2007) J. Differential Equations , vol.236 , pp. 460-492
    • Lu, K.N.1    Schmalfuß, B.2
  • 23
    • 0033455085 scopus 로고    scopus 로고
    • The stable manifold theorem for stochastic differential equations
    • Mohammed S.-E.A., and Scheutzow M.K.R. The stable manifold theorem for stochastic differential equations. Ann. Probab. 27 (1999) 615-652
    • (1999) Ann. Probab. , vol.27 , pp. 615-652
    • Mohammed, S.-E.A.1    Scheutzow, M.K.R.2
  • 24
    • 0035423923 scopus 로고    scopus 로고
    • Attraction, stability and boundedness for stochastic differential delay equations
    • Mao X.R. Attraction, stability and boundedness for stochastic differential delay equations. Nonlinear Anal. 47 (2001) 4795-4806
    • (2001) Nonlinear Anal. , vol.47 , pp. 4795-4806
    • Mao, X.R.1
  • 25
    • 0011618959 scopus 로고
    • Linearization of random dynamical systems
    • Jones C., Kirchgraber U., and Walther H.O. (Eds), Springer-Verlag, New York
    • Wanner T. Linearization of random dynamical systems. In: Jones C., Kirchgraber U., and Walther H.O. (Eds). Dynamics Reported, vol. 4 (1995), Springer-Verlag, New York 203-269
    • (1995) Dynamics Reported, vol. 4 , pp. 203-269
    • Wanner, T.1
  • 26
    • 33846913252 scopus 로고    scopus 로고
    • Dynamics for the stochastic nonlocal Kuramoto-Sivashinsky equation
    • Yang D.S. Dynamics for the stochastic nonlocal Kuramoto-Sivashinsky equation. J. Math. Anal. Appl. 330 (2007) 550-570
    • (2007) J. Math. Anal. Appl. , vol.330 , pp. 550-570
    • Yang, D.S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.