-
1
-
-
0036056652
-
Subgroup growth in some pro-p groups
-
Barnea Y., and Guralnick R. Subgroup growth in some pro-p groups. Proc. Amer. Math. Soc. 130 3 (2002) 653-659
-
(2002)
Proc. Amer. Math. Soc.
, vol.130
, Issue.3
, pp. 653-659
-
-
Barnea, Y.1
Guralnick, R.2
-
2
-
-
0346899437
-
Index-subgroups of the Nottingham group
-
Barnea Y., and Klopsch B. Index-subgroups of the Nottingham group. Adv. Math. 180 1 (2003) 187-221
-
(2003)
Adv. Math.
, vol.180
, Issue.1
, pp. 187-221
-
-
Barnea, Y.1
Klopsch, B.2
-
3
-
-
0035534514
-
Pro-p groups of finite width
-
Camina A.R., and Camina R.D. Pro-p groups of finite width. Comm. Algebra 29 4 (2001) 1583-1593
-
(2001)
Comm. Algebra
, vol.29
, Issue.4
, pp. 1583-1593
-
-
Camina, A.R.1
Camina, R.D.2
-
4
-
-
57349200064
-
-
R. Camina, The Nottingham group, in: M. du Sautoy, et al. (Eds.), [6], pp. 205-221
-
R. Camina, The Nottingham group, in: M. du Sautoy, et al. (Eds.), [6], pp. 205-221
-
-
-
-
5
-
-
0037504704
-
Analytic pro-p Groups
-
Cambridge University Press, Cambridge
-
Dixon J.D., du Sautoy M.P.F., Mann A., and Segal D. Analytic pro-p Groups. Cambridge Stud. Adv. Math. 2nd ed. vol. 61 (1999), Cambridge University Press, Cambridge
-
(1999)
Cambridge Stud. Adv. Math. 2nd ed.
, vol.61
-
-
Dixon, J.D.1
du Sautoy, M.P.F.2
Mann, A.3
Segal, D.4
-
6
-
-
0004118499
-
-
du Sautoy M., Segal D., and Shalev A. (Eds), Birkhäuser Boston Inc., Boston, MA
-
In: du Sautoy M., Segal D., and Shalev A. (Eds). New Horizons in pro-p Groups. Progr. Math. vol. 184 (2000), Birkhäuser Boston Inc., Boston, MA
-
(2000)
Progr. Math.
, vol.184
-
-
-
7
-
-
2342569758
-
New just-infinite pro-p groups of finite width and subgroups of the Nottingham group
-
Ershov M. New just-infinite pro-p groups of finite width and subgroups of the Nottingham group. J. Algebra 275 1 (2004) 419-449
-
(2004)
J. Algebra
, vol.275
, Issue.1
, pp. 419-449
-
-
Ershov, M.1
-
8
-
-
0036659981
-
Ideally constrained Lie algebras
-
Gavioli N., and Monti V. Ideally constrained Lie algebras. J. Algebra 253 1 (2002) 31-49
-
(2002)
J. Algebra
, vol.253
, Issue.1
, pp. 31-49
-
-
Gavioli, N.1
Monti, V.2
-
10
-
-
57349180252
-
Just infinite periodic Lie algebras
-
Walter de Gruyter GmbH & Co. KG, Berlin
-
Gavioli N., Monti V., and Scoppola C.M. Just infinite periodic Lie algebras. Finite Groups 2003 (2004), Walter de Gruyter GmbH & Co. KG, Berlin 73-85
-
(2004)
Finite Groups 2003
, pp. 73-85
-
-
Gavioli, N.1
Monti, V.2
Scoppola, C.M.3
-
11
-
-
24044435225
-
The Fesenko groups have finite width
-
Griffin C. The Fesenko groups have finite width. Q. J. Math. 56 3 (2005) 337-344
-
(2005)
Q. J. Math.
, vol.56
, Issue.3
, pp. 337-344
-
-
Griffin, C.1
-
12
-
-
57349126609
-
-
R.I. Grigorchuk, Just infinite branch groups, in: M. du Sautoy, et al. (Eds.), [6], pp. 121-179
-
R.I. Grigorchuk, Just infinite branch groups, in: M. du Sautoy, et al. (Eds.), [6], pp. 121-179
-
-
-
-
13
-
-
0000847658
-
Almost-classical Lie algebras. I, II
-
453-460
-
Hogeweij G.M.D. Almost-classical Lie algebras. I, II. Nederl. Akad. Wetensch. Indag. Math. 44 4 (1982) 441-452 453-460
-
(1982)
Nederl. Akad. Wetensch. Indag. Math.
, vol.44
, Issue.4
, pp. 441-452
-
-
Hogeweij, G.M.D.1
-
14
-
-
0003351794
-
Endliche Gruppen. I
-
Springer-Verlag, Berlin
-
Huppert B. Endliche Gruppen. I. Grundlehren Math. Wiss. vol. 134 (1967), Springer-Verlag, Berlin
-
(1967)
Grundlehren Math. Wiss.
, vol.134
-
-
Huppert, B.1
-
15
-
-
0037107147
-
On linear just infinite pro-p groups
-
Jaikin-Zapirain A. On linear just infinite pro-p groups. J. Algebra 255 2 (2002) 392-404
-
(2002)
J. Algebra
, vol.255
, Issue.2
, pp. 392-404
-
-
Jaikin-Zapirain, A.1
-
16
-
-
44649118720
-
Analytic groups over general pro-p domains
-
Jaikin-Zapirain A., and Klopsch B. Analytic groups over general pro-p domains. J. Lond. Math. Soc. (2) 76 2 (2007) 365-383
-
(2007)
J. Lond. Math. Soc. (2)
, vol.76
, Issue.2
, pp. 365-383
-
-
Jaikin-Zapirain, A.1
Klopsch, B.2
-
20
-
-
23044448219
-
The Structure of Groups of Prime Power Order
-
Oxford University Press, Oxford
-
Leedham-Green C.R., and McKay S. The Structure of Groups of Prime Power Order. London Math. Soc. Monogr. Ser. (N.S.) vol. 27 (2002), Oxford University Press, Oxford
-
(2002)
London Math. Soc. Monogr. Ser. (N.S.)
, vol.27
-
-
Leedham-Green, C.R.1
McKay, S.2
-
21
-
-
0037842329
-
Subgroup Growth
-
Birkhäuser Verlag, Basel
-
Lubotzky A., and Segal D. Subgroup Growth. Progr. Math. vol. 212 (2003), Birkhäuser Verlag, Basel
-
(2003)
Progr. Math.
, vol.212
-
-
Lubotzky, A.1
Segal, D.2
-
22
-
-
1842602965
-
Noncommutative Noetherian Rings
-
American Mathematical Society, Providence, RI with the cooperation of L.W. Small
-
McConnell J.C., and Robson J.C. Noncommutative Noetherian Rings. Grad. Stud. Math. revised ed. vol. 30 (2001), American Mathematical Society, Providence, RI with the cooperation of L.W. Small
-
(2001)
Grad. Stud. Math. revised ed.
, vol.30
-
-
McConnell, J.C.1
Robson, J.C.2
-
23
-
-
0001670151
-
Compact subgroups of linear algebraic groups
-
Pink R. Compact subgroups of linear algebraic groups. J. Algebra 206 2 (1998) 438-504
-
(1998)
J. Algebra
, vol.206
, Issue.2
, pp. 438-504
-
-
Pink, R.1
-
24
-
-
0003248240
-
A Course in the Theory of Groups
-
Springer-Verlag, New York
-
Robinson D.J.S. A Course in the Theory of Groups. Grad. Texts in Math. 2nd ed. vol. 80 (1996), Springer-Verlag, New York
-
(1996)
Grad. Texts in Math. 2nd ed.
, vol.80
-
-
Robinson, D.J.S.1
-
25
-
-
57349096159
-
-
A. Shalev, Lie methods in the theory of pro-p groups, in: M. du Sautoy, et al. (Eds.), [6], pp. 1-54
-
A. Shalev, Lie methods in the theory of pro-p groups, in: M. du Sautoy, et al. (Eds.), [6], pp. 1-54
-
-
-
-
26
-
-
57349142751
-
-
J.S. Wilson, On just infinite abstract and profinite groups, in: M. du Sautoy, et al. (Eds.), [6], pp. 181-203
-
J.S. Wilson, On just infinite abstract and profinite groups, in: M. du Sautoy, et al. (Eds.), [6], pp. 181-203
-
-
-
|