-
1
-
-
34447341409
-
-
a) A.-H. Lu, E. L. Salabas, F. Schüth, Angew. Chem. 2007, 119, 1242-1266;
-
(2007)
Angew. Chem
, vol.119
, pp. 1242-1266
-
-
Lu, A.-H.1
Salabas, E.L.2
Schüth, F.3
-
2
-
-
34247179477
-
-
Angew. Chem. Int. Ed. 2007, 46, 1222-1244;
-
(2007)
Angew. Chem. Int. Ed
, vol.46
, pp. 1222-1244
-
-
-
4
-
-
0037975718
-
-
c) X. K. Zhang, Y. F. Li, J. Q. Xiao, E. D. Wetzel, J. Appl. Phys. 2003, 93, 7124-7126.
-
(2003)
J. Appl. Phys
, vol.93
, pp. 7124-7126
-
-
Zhang, X.K.1
Li, Y.F.2
Xiao, J.Q.3
Wetzel, E.D.4
-
5
-
-
0022681678
-
-
S. Chikazumi, S. Taketomi, M. Ukita, M. Mizukami, H. Miyajima, M. Setogawa, Y. Kurihara, J. Magn. Magn. Mater. 1987, 65, 245-251.
-
(1987)
J. Magn. Magn. Mater
, vol.65
, pp. 245-251
-
-
Chikazumi, S.1
Taketomi, S.2
Ukita, M.3
Mizukami, M.4
Miyajima, H.5
Setogawa, M.6
Kurihara, Y.7
-
6
-
-
28044436230
-
-
a) A.-H. Lu, W. Schmidt, N. Matoussevitch, H. Bönnemann, B. Spliethoff, B. Tesche, E. Bill, W. Kiefer, F. Schüth, Angew. Chem. 2004, 116, 4403-4406;
-
(2004)
Angew. Chem
, vol.116
, pp. 4403-4406
-
-
Lu, A.-H.1
Schmidt, W.2
Matoussevitch, N.3
Bönnemann, H.4
Spliethoff, B.5
Tesche, B.6
Bill, E.7
Kiefer, W.8
Schüth, F.9
-
7
-
-
4544353284
-
-
Angew. Chem. Int. Ed. 2004, 43, 4303-4306;
-
(2004)
Angew. Chem. Int. Ed
, vol.43
, pp. 4303-4306
-
-
-
8
-
-
33745443031
-
-
b) S. C. Tsang, V. Caps, I. Paraskevas, D. Chadwick, D. Thompsett, Angew. Chem. 2004, 116, 5763-5767;
-
(2004)
Angew. Chem
, vol.116
, pp. 5763-5767
-
-
Tsang, S.C.1
Caps, V.2
Paraskevas, I.3
Chadwick, D.4
Thompsett, D.5
-
9
-
-
8444232867
-
-
Angew. Chem. Int. Ed. 2004, 43, 5645-5649;
-
(2004)
Angew. Chem. Int. Ed
, vol.43
, pp. 5645-5649
-
-
-
10
-
-
30744455085
-
-
c) Y. Theng, P. D. Stevens, Y. Gao, J. Org. Chem. 2006, 71, 537-542;
-
(2006)
J. Org. Chem
, vol.71
, pp. 537-542
-
-
Theng, Y.1
Stevens, P.D.2
Gao, Y.3
-
12
-
-
33845221249
-
-
Angew. Chem. Int. Ed. 2006, 45, 7564-7567;
-
(2006)
Angew. Chem. Int. Ed
, vol.45
, pp. 7564-7567
-
-
-
14
-
-
53849104214
-
-
f) R. N. Grass, E. K. Athanassiou, W. J. Stark, Angew. Chem. 2007, 119, 4996-4999;
-
(2007)
Angew. Chem
, vol.119
, pp. 4996-4999
-
-
Grass, R.N.1
Athanassiou, E.K.2
Stark, W.J.3
-
15
-
-
34447331972
-
-
Angew. Chem. Int. Ed. 2007, 46, 4909-4912;
-
(2007)
Angew. Chem. Int. Ed
, vol.46
, pp. 4909-4912
-
-
-
16
-
-
38349086156
-
-
g) P. Baruwati, D. Guin, S. V. Manorama, Org. Lett. 2007, 9, 5377-5380.
-
(2007)
Org. Lett
, vol.9
, pp. 5377-5380
-
-
Baruwati, P.1
Guin, D.2
Manorama, S.V.3
-
17
-
-
33746648133
-
-
Review
-
Review: M. V. Yezhelyev, X. Gao, Y. Xing, A. Al-Hajj, S. Nie, R. M. O'Regan, Lancet Oncol. 2006, 7, 657-667.
-
(2006)
Lancet Oncol
, vol.7
, pp. 657-667
-
-
Yezhelyev, M.V.1
Gao, X.2
Xing, Y.3
Al-Hajj, A.4
Nie, S.5
O'Regan, R.M.6
-
18
-
-
33744906740
-
-
a) S. Mornet, S. Vasseur, F. Grasset, P. Verveka, G. Goglio, A. Demourgues, J. Portier, E. Pollert, E. Duguet, Prog. Solid State Chem. 2006, 34, 237;
-
(2006)
Prog. Solid State Chem
, vol.34
, pp. 237
-
-
Mornet, S.1
Vasseur, S.2
Grasset, F.3
Verveka, P.4
Goglio, G.5
Demourgues, A.6
Portier, J.7
Pollert, E.8
Duguet, E.9
-
19
-
-
17844384780
-
-
b) Z. Li, L. Wei, M. Y. Gao, H. Lei, Adv. Mater. 2005, 17, 1001-1005.
-
(2005)
Adv. Mater
, vol.17
, pp. 1001-1005
-
-
Li, Z.1
Wei, L.2
Gao, M.Y.3
Lei, H.4
-
20
-
-
57349128926
-
-
M. Kröll, M. Pridöhl, G. Zimmermann, Mater. Res. Soc. Symp. Proc. 2004, 788, L4.3.1-L4.3.6.
-
M. Kröll, M. Pridöhl, G. Zimmermann, Mater. Res. Soc. Symp. Proc. 2004, 788, L4.3.1-L4.3.6.
-
-
-
-
21
-
-
0029308526
-
-
a) M. R. Zachariah, M. I. Aquino, R. D. Shull, B. E. Steel, Nanostruct. Mater. 1995, 5, 383-392;
-
(1995)
Nanostruct. Mater
, vol.5
, pp. 383-392
-
-
Zachariah, M.R.1
Aquino, M.I.2
Shull, R.D.3
Steel, B.E.4
-
22
-
-
0033344157
-
-
b) S. H. Ehrman, S. K. Friedlander, M. R. Zachariah, J. Mater. Res. 1999, 14, 4551-4561.
-
(1999)
J. Mater. Res
, vol.14
, pp. 4551-4561
-
-
Ehrman, S.H.1
Friedlander, S.K.2
Zachariah, M.R.3
-
23
-
-
0033154138
-
-
R. Hiergeist, W. Andrä, N. Buske, R. Hergt, I. Hilger, U. Richter, W. Kaiser, J. Magn. Magn. Mater. 1999, 201, 420-422.
-
(1999)
J. Magn. Magn. Mater
, vol.201
, pp. 420-422
-
-
Hiergeist, R.1
Andrä, W.2
Buske, N.3
Hergt, R.4
Hilger, I.5
Richter, U.6
Kaiser, W.7
-
24
-
-
33644849331
-
-
R. Mohr, K. Kratz, T. Weigel, M. Lucka-Gabor, M. Moneke, A. Lendlein, Proc. Natl. Acad. Sci. USA 2006, 103, 3540-3545.
-
(2006)
Proc. Natl. Acad. Sci. USA
, vol.103
, pp. 3540-3545
-
-
Mohr, R.1
Kratz, K.2
Weigel, T.3
Lucka-Gabor, M.4
Moneke, M.5
Lendlein, A.6
-
25
-
-
33747189999
-
-
A. Kirschning, W. Solodenko, K. Mennecke, Chem. Eur. J. 2006, 12, 5972-5990.
-
(2006)
Chem. Eur. J
, vol.12
, pp. 5972-5990
-
-
Kirschning, A.1
Solodenko, W.2
Mennecke, K.3
-
26
-
-
57349196364
-
-
With conductive materials, about 80% of the heating effect occurs on the surface. Small or thin parts generally heat more quickly than large thick parts, especially if the larger parts need to be heated all the way through. Therefore, magnetic nanoparticles are ideally suited for being heated through electromagnetic fields
-
With conductive materials, about 80% of the heating effect occurs on the surface. Small or thin parts generally heat more quickly than large thick parts, especially if the larger parts need to be heated all the way through. Therefore, magnetic nanoparticles are ideally suited for being heated through electromagnetic fields.
-
-
-
-
27
-
-
0345732180
-
-
Reviews on chemically functionalized flowthrough systems: a
-
Reviews on chemically functionalized flowthrough systems: a) G. Jas, A. Kirschning, Chem. Eur. J. 2003, 9, 5708-5723;
-
(2003)
Chem. Eur. J
, vol.9
, pp. 5708-5723
-
-
Jas, G.1
Kirschning, A.2
-
28
-
-
57349142982
-
-
Immobilized Catalysts: A. Kirschning, G. Jas, Top. Curr. Chem. 2004, 242, 209-239;
-
b) "Immobilized Catalysts": A. Kirschning, G. Jas, Top. Curr. Chem. 2004, 242, 209-239;
-
-
-
-
29
-
-
53749106251
-
-
Eds, P. H. Seeberger, T. Blume, Springer, Berlin
-
c) I. R. Baxendale, S. V. Ley in New Adventures to Efficient Chemical Synthesis: Emerging Technologies (Eds.: P. H. Seeberger, T. Blume), Springer, Berlin, 2007, pp. 151-185.
-
(2007)
New Adventures to Efficient Chemical Synthesis: Emerging Technologies
, pp. 151-185
-
-
Baxendale, I.R.1
Ley, S.V.2
-
30
-
-
57349193528
-
-
The temperature was measured under steady-state conditions using an IR pyrometer. This instrument determines the overall temperature of the reactor interior but fails to measure the temperature of the nanoparticles. Other methods for measuring the fluid temperature like thermocouples positioned inside the reactor were not suitable because the sensor interacts with the electromagnetic field
-
The temperature was measured under steady-state conditions using an IR pyrometer. This instrument determines the overall temperature of the reactor interior but fails to measure the temperature of the nanoparticles. Other methods for measuring the fluid temperature like thermocouples positioned inside the reactor were not suitable because the sensor interacts with the electromagnetic field.
-
-
-
-
31
-
-
0037295452
-
-
a) T. J. Yoon, W. Lee, Y. S. Oh, J. K. Lee, New J. Chem. 2003, 27, 227-229;
-
(2003)
New J. Chem
, vol.27
, pp. 227-229
-
-
Yoon, T.J.1
Lee, W.2
Oh, Y.S.3
Lee, J.K.4
-
32
-
-
20444488124
-
-
b) P. D. Stevens, J. Fan, H. M. R. Gardimalla, M. Yen, Y. Gao, Org. Lett. 2005, 7, 2085-2088;
-
(2005)
Org. Lett
, vol.7
, pp. 2085-2088
-
-
Stevens, P.D.1
Fan, J.2
Gardimalla, H.M.R.3
Yen, M.4
Gao, Y.5
-
33
-
-
25444436715
-
-
c) P. D. Stevens, G. Li, J. Fan, M. Yen, Y. Gao, Chem. Commun. 2005, 4435-4437;
-
(2005)
Chem. Commun
, pp. 4435-4437
-
-
Stevens, P.D.1
Li, G.2
Fan, J.3
Yen, M.4
Gao, Y.5
-
34
-
-
24744435555
-
-
d) A. Hu, G. T. Yee, W. Lin, J. Am. Chem. Soc. 2005, 127, 12486-12487;
-
(2005)
J. Am. Chem. Soc
, vol.127
, pp. 12486-12487
-
-
Hu, A.1
Yee, G.T.2
Lin, W.3
-
35
-
-
34948854220
-
-
e) R. Abu-Reziq, D. Wang, M. Post, H. Alper, Adv. Synth. Catal. 2007, 349, 2145-2150;
-
(2007)
Adv. Synth. Catal
, vol.349
, pp. 2145-2150
-
-
Abu-Reziq, R.1
Wang, D.2
Post, M.3
Alper, H.4
-
36
-
-
34548462012
-
-
f) C. S. Gill, B. A. Price, C. W. Jones, J. Catal. 2007, 251, 145-152.
-
(2007)
J. Catal
, vol.251
, pp. 145-152
-
-
Gill, C.S.1
Price, B.A.2
Jones, C.W.3
-
37
-
-
28444491544
-
-
a) U. Kunz, S. Leue, F. Stuhlmann, G. Sourkouni-Argirusi, H. Wen, G. Jas, A. Kirschning, Eur. J. Org. Chem. 2004, 3601-3610;
-
(2004)
Eur. J. Org. Chem
, pp. 3601-3610
-
-
Kunz, U.1
Leue, S.2
Stuhlmann, F.3
Sourkouni-Argirusi, G.4
Wen, H.5
Jas, G.6
Kirschning, A.7
-
38
-
-
41949099721
-
-
b) K. Mennecke, R. Cecilia, T. N. Glasnov, S. Gruhl, C. Vogt, A. Feldhoff, M. A. Larrubia Vargas, C. O. Kappe, U. Kunz, A. Kirschning, Adv. Synth. Catal. 2008, 350, 717-730.
-
(2008)
Adv. Synth. Catal
, vol.350
, pp. 717-730
-
-
Mennecke, K.1
Cecilia, R.2
Glasnov, T.N.3
Gruhl, S.4
Vogt, C.5
Feldhoff, A.6
Larrubia Vargas, M.A.7
Kappe, C.O.8
Kunz, U.9
Kirschning, A.10
-
39
-
-
57349128390
-
-
The temperature achieved by inductive heating is dependent on several factors such as reactor diameter, inductor design, and the nature of the nanoparticles used. Therefore, the ppt value has to be recalibrated for every inductor/reactor system. This situation is comparable with the use of microwave heating devices, where, for example, the choice of solvent has a crucial impact on the heat generated
-
The temperature achieved by inductive heating is dependent on several factors such as reactor diameter, inductor design, and the nature of the nanoparticles used. Therefore, the ppt value has to be recalibrated for every inductor/reactor system. This situation is comparable with the use of microwave heating devices, where, for example, the choice of solvent has a crucial impact on the heat generated.
-
-
-
-
40
-
-
57349172975
-
-
The ppt value is significantly higher than in the other cases. Here, a first-generation inductor was employed
-
The ppt value is significantly higher than in the other cases. Here, a first-generation inductor was employed.
-
-
-
|