메뉴 건너뛰기




Volumn 222, Issue 4, 2008, Pages 301-314

From Newtonian dynamics to sparse Tableaux formulation and multi-body dynamics

Author keywords

Automatic dynamic analysis of mechanical systems; Backwards difference formula; Computer simulation; Hilber Huges Taylor; Index 2; Numerical integration; Sparse matrix; Sparse Tableaux formulation; Stabilized index 1; Stabilized index 2

Indexed keywords

COMPUTER SIMULATION; COMPUTER SYSTEMS; DYNAMIC ANALYSIS; DYNAMIC MECHANICAL ANALYSIS; DYNAMICS; INTEGRATION; INTERPOLATION; MECHANICAL ENGINEERING; MECHATRONICS; NUMERICAL ANALYSIS; NUMERICAL METHODS; SEMANTIC WEB; VIBRATIONS (MECHANICAL);

EID: 57349099391     PISSN: 14644193     EISSN: None     Source Type: Journal    
DOI: 10.1243/14644193JMBD153     Document Type: Article
Times cited : (13)

References (13)
  • 1
    • 23444447674 scopus 로고    scopus 로고
    • An index zero formulation of the general dynamic differential equations using the transmission functions
    • Orlandea, N. V. An index zero formulation of the general dynamic differential equations using the transmission functions. Proc. IMechE, Part K: J. Multi-body Dynamics, 2005, 219, 159-171.
    • (2005) Proc. IMechE, Part K: J. Multi-body Dynamics , vol.219 , pp. 159-171
    • Orlandea, N.V.1
  • 3
    • 0000353273 scopus 로고
    • Differential-algebraic equation index transformation
    • Gear, C. W. Differential-algebraic equation index transformation. SIAM J. Sci. Stast. Comp., 1988, 9, 39-47.
    • (1988) SIAM J. Sci. Stast. Comp , vol.9 , pp. 39-47
    • Gear, C.W.1
  • 5
    • 0242686247 scopus 로고    scopus 로고
    • A study of effects of the lower index methods on ADAMS sparse tableau formulation for the computational dynamics of multi-body mechanical systems
    • Orlandea, N. V. A study of effects of the lower index methods on ADAMS sparse tableau formulation for the computational dynamics of multi-body mechanical systems. Proc. Instn Mech. Engrs, Part K: J. Multi-body Dynamics, 1999, 213, 1-9.
    • (1999) Proc. Instn Mech. Engrs, Part K: J. Multi-body Dynamics , vol.213 , pp. 1-9
    • Orlandea, N.V.1
  • 9
    • 85003486143 scopus 로고    scopus 로고
    • The Newmark integration method for simulation of multibody systems: Analytical considerations
    • Orlando, FL
    • Gavrea, D., Negrut, D., and Potra F. A. The Newmark integration method for simulation of multibody systems: analytical considerations. In Proceedings of IMECE, Orlando, FL, 2005.
    • (2005) Proceedings of IMECE
    • Gavrea, D.1    Negrut, D.2    Potra, F.A.3
  • 11
    • 0031223710 scopus 로고    scopus 로고
    • Definition of the slopes and finite element absolute nodal coordinate formulation
    • Shabana, A. A. Definition of the slopes and finite element absolute nodal coordinate formulation. Multibody Syst. Dyn., 1997, 1, 339-348.
    • (1997) Multibody Syst. Dyn , vol.1 , pp. 339-348
    • Shabana, A.A.1
  • 13
    • 0037983616 scopus 로고    scopus 로고
    • Bauchau, O. A. A self-stabilized algorithm for enforcing constraints on multibody systems. Int. J. Solids Struct., 2003, 40(12), 3253-3271.
    • Bauchau, O. A. A self-stabilized algorithm for enforcing constraints on multibody systems. Int. J. Solids Struct., 2003, 40(12), 3253-3271.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.