-
3
-
-
4644258558
-
-
10.1126/science.1101501
-
E. Kim and M. H. W. Chan, Science 305, 1941 (2004). 10.1126/science. 1101501
-
(2004)
Science
, vol.305
, pp. 1941
-
-
Kim, E.1
Chan, M.H.W.2
-
4
-
-
33748064677
-
-
10.1126/science.1130879
-
S. Sasaki, R. Ishiguro, F. Caupin, H. J. Maris, and S. Balibar, Science 313, 1098 (2006). 10.1126/science.1130879
-
(2006)
Science
, vol.313
, pp. 1098
-
-
Sasaki, S.1
Ishiguro, R.2
Caupin, F.3
Maris, H.J.4
Balibar, S.5
-
6
-
-
34047144978
-
-
10.1103/PhysRevLett.98.135301
-
L. Pollet, M. Boninsegni, A. B. Kuklov, N. V. Prokof'ev, B. V. Svistunov, and M. Troyer, Phys. Rev. Lett. 98, 135301 (2007). 10.1103/PhysRevLett.98. 135301
-
(2007)
Phys. Rev. Lett.
, vol.98
, pp. 135301
-
-
Pollet, L.1
Boninsegni, M.2
Kuklov, A.B.3
Prokof'Ev, N.V.4
Svistunov, B.V.5
Troyer, M.6
-
7
-
-
50249134331
-
-
10.1103/PhysRevLett.101.097202
-
L. Pollet, M. Boninsegni, A. B. Kuklov, N. V. Prokof'ev, B. V. Svistunov, and M. Troyer, Phys. Rev. Lett. 101, 097202 (2008). 10.1103/PhysRevLett.101. 097202
-
(2008)
Phys. Rev. Lett.
, vol.101
, pp. 097202
-
-
Pollet, L.1
Boninsegni, M.2
Kuklov, A.B.3
Prokof'Ev, N.V.4
Svistunov, B.V.5
Troyer, M.6
-
9
-
-
0037156919
-
-
10.1103/PhysRevLett.88.167208
-
G. Schmid, S. Todo, M. Troyer, and A. Dorneich, Phys. Rev. Lett. 88, 167208 (2002). 10.1103/PhysRevLett.88.167208
-
(2002)
Phys. Rev. Lett.
, vol.88
, pp. 167208
-
-
Schmid, G.1
Todo, S.2
Troyer, M.3
Dorneich, A.4
-
10
-
-
26944456270
-
-
10.1103/PhysRevLett.94.207202
-
P. Sengupta, L. P. Pryadko, F. Alet, M. Troyer, and G. Schmid, Phys. Rev. Lett. 94, 207202 (2005). 10.1103/PhysRevLett.94.207202
-
(2005)
Phys. Rev. Lett.
, vol.94
, pp. 207202
-
-
Sengupta, P.1
Pryadko, L.P.2
Alet, F.3
Troyer, M.4
Schmid, G.5
-
11
-
-
27144525875
-
-
10.1103/PhysRevLett.95.127205
-
S. Wessel and M. Troyer, Phys. Rev. Lett. 95, 127205 (2005). 10.1103/PhysRevLett.95.127205
-
(2005)
Phys. Rev. Lett.
, vol.95
, pp. 127205
-
-
Wessel, S.1
Troyer, M.2
-
12
-
-
27144529953
-
-
10.1103/PhysRevLett.95.127206
-
D. Heidarian and K. Damle, Phys. Rev. Lett. 95, 127206 (2005). 10.1103/PhysRevLett.95.127206
-
(2005)
Phys. Rev. Lett.
, vol.95
, pp. 127206
-
-
Heidarian, D.1
Damle, K.2
-
13
-
-
27144467475
-
-
10.1103/PhysRevLett.95.127207
-
R. G. Melko, A. Paramekanti, A. A. Burkov, A. Vishwanath, D. N. Sheng, and L. Balents, Phys. Rev. Lett. 95, 127207 (2005). 10.1103/PhysRevLett.95. 127207
-
(2005)
Phys. Rev. Lett.
, vol.95
, pp. 127207
-
-
Melko, R.G.1
Paramekanti, A.2
Burkov, A.A.3
Vishwanath, A.4
Sheng, D.N.5
Balents, L.6
-
16
-
-
38849155058
-
-
10.1103/PhysRevB.77.014524
-
Y. C. Chen, R. G. Melko, S. Wessel, and Y. J. Kao, Phys. Rev. B 77, 014524 (2008). 10.1103/PhysRevB.77.014524
-
(2008)
Phys. Rev. B
, vol.77
, pp. 014524
-
-
Chen, Y.C.1
Melko, R.G.2
Wessel, S.3
Kao, Y.J.4
-
17
-
-
40849131176
-
-
10.1103/PhysRevLett.100.090401
-
K. P. Schmidt, J. Dorier, A. M. Läuchli, and F. Mila, Phys. Rev. Lett. 100, 090401 (2008). 10.1103/PhysRevLett.100.090401
-
(2008)
Phys. Rev. Lett.
, vol.100
, pp. 090401
-
-
Schmidt, K.P.1
Dorier, J.2
Läuchli, A.M.3
Mila, F.4
-
18
-
-
33748968290
-
-
10.1103/PhysRevLett.97.127204
-
K.-K. Ng and T. K. Lee, Phys. Rev. Lett. 97, 127204 (2006). 10.1103/PhysRevLett.97.127204
-
(2006)
Phys. Rev. Lett.
, vol.97
, pp. 127204
-
-
Ng, K.-K.1
Lee, T.K.2
-
19
-
-
34547303949
-
-
10.1103/PhysRevLett.99.027202
-
N. Laflorencie and F. Mila, Phys. Rev. Lett. 99, 027202 (2007). 10.1103/PhysRevLett.99.027202
-
(2007)
Phys. Rev. Lett.
, vol.99
, pp. 027202
-
-
Laflorencie, N.1
Mila, F.2
-
22
-
-
85083138981
-
-
Plotted QMC results for the CBS structure factor S (π,π) both for the spin-dimer model of Eq. 1 (Fig. 2) and for the minimal effective model [Eqs. 9 10] (shown in Fig. 8) have been renormalized so that a perfectly ordered CBS plateau would lead to S (π,π) =1, as within our MF approach, Eq. 5. In this way, we can see that S (π,π) is reduced to ∼60-70% of its classical value when quantum fluctuations are taken into account.
-
Plotted QMC results for the CBS structure factor S (π,π) both for the spin-dimer model of Eq. 1 (Fig. 2) and for the minimal effective model [Eqs. 9 10] (shown in Fig. 8) have been renormalized so that a perfectly ordered CBS plateau would lead to S (π,π) =1, as within our MF approach, Eq. 5. In this way, we can see that S (π,π) is reduced to ∼60-70% of its classical value when quantum fluctuations are taken into account.
-
-
-
-
23
-
-
0000697345
-
-
10.1103/PhysRevB.57.3454
-
K. Totsuka, Phys. Rev. B 57, 3454 (1998). 10.1103/PhysRevB.57.3454
-
(1998)
Phys. Rev. B
, vol.57
, pp. 3454
-
-
Totsuka, K.1
-
24
-
-
0000832036
-
-
10.1007/s100510050542
-
F. Mila, Eur. Phys. J. B 6, 201 (1998). 10.1007/s100510050542
-
(1998)
Eur. Phys. J. B
, vol.6
, pp. 201
-
-
Mila, F.1
-
25
-
-
85083126141
-
-
To second order in J/ J, the processes appearing in Figs. 3 3 have the same amplitude. This is not the case for the effective Hamiltonian obtained from CORE; see Table 1.
-
To second order in J/ J, the processes appearing in Figs. 3 3 have the same amplitude. This is not the case for the effective Hamiltonian obtained from CORE; see Table 1.
-
-
-
-
27
-
-
33744692787
-
-
10.1103/PhysRevD.48.5863
-
S. D. Głazek and K. G. Wilson, Phys. Rev. D 48, 5863 (1993). 10.1103/PhysRevD.48.5863
-
(1993)
Phys. Rev. D
, vol.48
, pp. 5863
-
-
Głazek, S.D.1
Wilson, K.G.2
-
28
-
-
26344479641
-
-
10.1103/PhysRevD.49.4214
-
S. D. Glazek and K. G. Wilson, Phys. Rev. D 49, 4214 (1994). 10.1103/PhysRevD.49.4214
-
(1994)
Phys. Rev. D
, vol.49
, pp. 4214
-
-
Glazek, S.D.1
Wilson, K.G.2
-
29
-
-
42749108041
-
-
10.1103/PhysRevLett.87.167204
-
C. Knetter, K. P. Schmidt, M. Grüninger, and G. S. Uhrig, Phys. Rev. Lett. 87, 167204 (2001). 10.1103/PhysRevLett.87.167204
-
(2001)
Phys. Rev. Lett.
, vol.87
, pp. 167204
-
-
Knetter, C.1
Schmidt, K.P.2
Grüninger, M.3
Uhrig, G.S.4
-
30
-
-
0031184922
-
-
10.1007/BF02508481
-
J. Stein, J. Stat. Phys. 88, 487 (1997). 10.1007/BF02508481
-
(1997)
J. Stat. Phys.
, vol.88
, pp. 487
-
-
Stein, J.1
-
31
-
-
0032295577
-
-
10.1007/s100510050485
-
A. Mielke, Eur. Phys. J. B 5, 605 (1998). 10.1007/s100510050485
-
(1998)
Eur. Phys. J. B
, vol.5
, pp. 605
-
-
Mielke, A.1
-
32
-
-
0001386887
-
-
10.1103/PhysRevB.58.R14705
-
G. S. Uhrig and B. Normand, Phys. Rev. B 58, R14705 (1998). 10.1103/PhysRevB.58.R14705
-
(1998)
Phys. Rev. B
, vol.58
, pp. 14705
-
-
Uhrig, G.S.1
Normand, B.2
-
39
-
-
34547997565
-
-
10.1103/PhysRevB.76.064413
-
A. Abendschein and S. Capponi, Phys. Rev. B 76, 064413 (2007). 10.1103/PhysRevB.76.064413
-
(2007)
Phys. Rev. B
, vol.76
, pp. 064413
-
-
Abendschein, A.1
Capponi, S.2
-
40
-
-
85038307194
-
-
10.1103/PhysRevB.65.104508
-
E. Altman and A. Auerbach, Phys. Rev. B 65, 104508 (2002). 10.1103/PhysRevB.65.104508
-
(2002)
Phys. Rev. B
, vol.65
, pp. 104508
-
-
Altman, E.1
Auerbach, A.2
-
41
-
-
33747818830
-
-
10.1007/s00214-006-0090-8
-
S. Capponi, Theor. Chem. Acc. 116, 524 (2006). 10.1007/s00214-006-0090-8
-
(2006)
Theor. Chem. Acc.
, vol.116
, pp. 524
-
-
Capponi, S.1
-
43
-
-
85083120362
-
-
We remark that it is nontrivial to quantitatively relate the condensate density ρ0 [density of particles occupying the lowest energy mode, obtained within our MF procedure from Eq. 4] and the superfluid stiffness ρs [that measures the system's phase coherence and is obtained in terms of winding numbers in the QMC simulations, Eq. 11]. For a discussion of how ρ0, ρs and the superfluid density are related, the reader is referred to Refs.; in the present case, this issue is further complicated by the presence of correlated hopping terms in the effective Hamiltonian Eq. 9. However, we stress that the comparison between different results for the location of the SS phase suffices for concluding on the mechanism for spin supersolidity in the model [Eq. 1], the goal of the present study.
-
We remark that it is nontrivial to quantitatively relate the condensate density ρ0 [density of particles occupying the lowest energy mode, obtained within our MF procedure from Eq. 4] and the superfluid stiffness ρs [that measures the system's phase coherence and is obtained in terms of winding numbers in the QMC simulations, Eq. 11]. For a discussion of how ρ0, ρs and the superfluid density are related, the reader is referred to Refs.; in the present case, this issue is further complicated by the presence of correlated hopping terms in the effective Hamiltonian Eq. 9. However, we stress that the comparison between different results for the location of the SS phase suffices for concluding on the mechanism for spin supersolidity in the model [Eq. 1], the goal of the present study.
-
-
-
-
44
-
-
85083148812
-
-
It is interesting to note that the effective uncorrelated hoppings for holes with range- 21/2 (NNN) and -2 (third-neighbor) have zero amplitude within the CORE approach and therefore cannot account for supersolidity in the spin-dimer model, Eq. 1. Accordingly, they are not present in the minimal model, Eq. 9, which therefore does not suffer from the sign problem.
-
It is interesting to note that the effective uncorrelated hoppings for holes with range- 21/2 (NNN) and -2 (third-neighbor) have zero amplitude within the CORE approach and therefore cannot account for supersolidity in the spin-dimer model, Eq. 1. Accordingly, they are not present in the minimal model, Eq. 9, which therefore does not suffer from the sign problem.
-
-
-
-
45
-
-
85083137237
-
-
By reducing t 1C from the starting value 0.145 and keeping all the other couplings appearing in Eq. 9 unchanged, CBS and SS already appear for t 1C ∼0.14.
-
By reducing t 1C from the starting value 0.145 and keeping all the other couplings appearing in Eq. 9 unchanged, CBS and SS already appear for t 1C ∼0.14.
-
-
-
-
46
-
-
85083127580
-
-
A MF analysis for the enlarged minimal model including, besides terms appearing in Eq. 9, the correlated hopping terms with amplitudes s 3C and s 5C [Eq. 4], reveals an enlarged SS region (compared with the one obtained for the full effective model). This suggests that the terms with amplitudes s 3C and s 5C play a role in stabilizing SS and the fact that they are not explicitly included in the minimal model [Eq. 9] might explain the shrunk SS region in our QMC results.
-
A MF analysis for the enlarged minimal model including, besides terms appearing in Eq. 9, the correlated hopping terms with amplitudes s 3C and s 5C [Eq. 4], reveals an enlarged SS region (compared with the one obtained for the full effective model). This suggests that the terms with amplitudes s 3C and s 5C play a role in stabilizing SS and the fact that they are not explicitly included in the minimal model [Eq. 9] might explain the shrunk SS region in our QMC results.
-
-
-
-
47
-
-
33751109521
-
-
10.1103/PhysRevB.74.174508
-
K. P. Schmidt, J. Dorier, A. Läuchli, and F. Mila, Phys. Rev. B 74, 174508 (2006). 10.1103/PhysRevB.74.174508
-
(2006)
Phys. Rev. B
, vol.74
, pp. 174508
-
-
Schmidt, K.P.1
Dorier, J.2
Läuchli, A.3
Mila, F.4
-
50
-
-
0000715040
-
-
10.1103/PhysRevB.59.R14157
-
A. W. Sandvik, Phys. Rev. B 59, R14157 (1999). 10.1103/PhysRevB.59.R14157
-
(1999)
Phys. Rev. B
, vol.59
, pp. 14157
-
-
Sandvik, A.W.1
-
54
-
-
0036497375
-
-
10.1103/PhysRevB.65.104519
-
K. Bernardet, G. G. Batrouni, J.-L. Meunier, G. Schmid, M. Troyer, and A. Dorneich, Phys. Rev. B 65, 104519 (2002). 10.1103/PhysRevB.65.104519
-
(2002)
Phys. Rev. B
, vol.65
, pp. 104519
-
-
Bernardet, K.1
Batrouni, G.G.2
Meunier, J.-L.3
Schmid, G.4
Troyer, M.5
Dorneich, A.6
|