-
1
-
-
0000593655
-
-
10.1016/0370-1573(86)90177-8;
-
G. Czycholl, Phys. Rep. 143, 277 (1986) 10.1016/0370-1573(86)90177-8
-
(1986)
Phys. Rep.
, vol.143
, pp. 277
-
-
Czycholl, G.1
-
2
-
-
33846355864
-
-
10.1016/0370-1573(89)90116-6
-
P. Schlottmann, Phys. Rep. 181, 1 (1989). 10.1016/0370-1573(89)90116-6
-
(1989)
Phys. Rep.
, vol.181
, pp. 1
-
-
Schlottmann, P.1
-
3
-
-
33745994236
-
-
10.1103/RevModPhys.48.219
-
C. M. Varma, Rev. Mod. Phys. 48, 219 (1976). 10.1103/RevModPhys.48.219
-
(1976)
Rev. Mod. Phys.
, vol.48
, pp. 219
-
-
Varma, C.M.1
-
4
-
-
0034191558
-
-
10.1080/000187300243345
-
P. S. Riseborough, Adv. Phys. 49, 257 (2000). 10.1080/000187300243345
-
(2000)
Adv. Phys.
, vol.49
, pp. 257
-
-
Riseborough, P.S.1
-
6
-
-
0001272444
-
-
10.1103/PhysRevB.48.10320;
-
B. Möller and P. Wölfle, Phys. Rev. B 48, 10320 (1993) 10.1103/PhysRevB.48.10320
-
(1993)
Phys. Rev. B
, vol.48
, pp. 10320
-
-
Möller, B.1
Wölfle, P.2
-
8
-
-
0001384456
-
-
10.1103/PhysRevB.53.3707
-
M. Guerrero and R. M. Noack, Phys. Rev. B 53, 3707 (1996). 10.1103/PhysRevB.53.3707
-
(1996)
Phys. Rev. B
, vol.53
, pp. 3707
-
-
Guerrero, M.1
Noack, R.M.2
-
11
-
-
0008846212
-
-
10.1103/PhysRevB.61.15246
-
J. W. Rasul, Phys. Rev. B 61, 15246 (2000). 10.1103/PhysRevB.61.15246
-
(2000)
Phys. Rev. B
, vol.61
, pp. 15246
-
-
Rasul, J.W.1
-
12
-
-
0034261178
-
-
10.1103/PhysRevB.62.5657
-
D. Meyer and W. Nolting, Phys. Rev. B 62, 5657 (2000). 10.1103/PhysRevB.62.5657
-
(2000)
Phys. Rev. B
, vol.62
, pp. 5657
-
-
Meyer, D.1
Nolting, W.2
-
15
-
-
0000079954
-
-
10.1103/PhysRevB.31.4728
-
S. K. Malik, A. M. Umarji, G. K. Shenoy, P. A. Montano, and M. E. Reeves, Phys. Rev. B 31, 4728 (1985). 10.1103/PhysRevB.31.4728
-
(1985)
Phys. Rev. B
, vol.31
, pp. 4728
-
-
Malik, S.K.1
Umarji, A.M.2
Shenoy, G.K.3
Montano, P.A.4
Reeves, M.E.5
-
16
-
-
0026929685
-
-
10.1016/0921-4526(92)90555-7
-
P. Bonville, P. Bellot, J. A. Hodges, P. Imbert, G. Jéhanno, G. Le Bras, J. Hammann, L. Leylekian, G. Chevrier, P. Thuéry, L. D'Onofrio, A. Hamzic, and A. Barthélémy, Physica B 182, 105 (1992). 10.1016/0921-4526(92)90555-7
-
(1992)
Physica B
, vol.182
, pp. 105
-
-
Bonville, P.1
Bellot, P.2
Hodges, J.A.3
Imbert, P.4
Jéhanno, G.5
Le Bras, G.6
Hammann, J.7
Leylekian, L.8
Chevrier, G.9
Thuéry, P.10
D'Onofrio, L.11
Hamzic, A.12
Barthélémy, A.13
-
18
-
-
34648837299
-
-
10.1103/PhysRevB.76.104418
-
C. Krellner, N. S. Kini, E. M. Brüning, K. Koch, H. Rosner, M. Nicklas, M. Baenitz, and C. Geibel, Phys. Rev. B 76, 104418 (2007). 10.1103/PhysRevB.76.104418
-
(2007)
Phys. Rev. B
, vol.76
, pp. 104418
-
-
Krellner, C.1
Kini, N.S.2
Brüning, E.M.3
Koch, K.4
Rosner, H.5
Nicklas, M.6
Baenitz, M.7
Geibel, C.8
-
19
-
-
0000115678
-
-
For a review, see 10.1007/BFb0107631
-
For a review, see D. Vollhardt, N. Blümer, K. Held, M. Kollar, J. Schlipf, M. Ulmke, and J. Wahle, Adv. Solid State Phys. 38, 383 (1999). 10.1007/BFb0107631
-
(1999)
Adv. Solid State Phys.
, vol.38
, pp. 383
-
-
Vollhardt, D.1
Blümer, N.2
Held, K.3
Kollar, M.4
Schlipf, J.5
Ulmke, M.6
Wahle, J.7
-
20
-
-
0008701465
-
-
10.1103/PhysRevB.23.271;
-
A. M. Oleś, Phys. Rev. B 23, 271 (1981) 10.1103/PhysRevB.23.271
-
(1981)
Phys. Rev. B
, vol.23
, pp. 271
-
-
Oleś, A.M.1
-
23
-
-
0000451722
-
-
10.1103/PhysRevB.56.12909
-
R. Frésard and G. Kotliar, Phys. Rev. B 56, 12909 (1997). 10.1103/PhysRevB.56.12909
-
(1997)
Phys. Rev. B
, vol.56
, pp. 12909
-
-
Frésard, R.1
Kotliar, G.2
-
24
-
-
0001333677
-
-
10.1103/PhysRevB.55.14968;
-
J. Kuei and R. T. Scalettar, Phys. Rev. B 55, 14968 (1997) 10.1103/PhysRevB.55.14968
-
(1997)
Phys. Rev. B
, vol.55
, pp. 14968
-
-
Kuei, J.1
Scalettar, R.T.2
-
25
-
-
0000395788
-
-
10.1103/PhysRevB.56.11022;
-
J. E. Hirsch, Phys. Rev. B 56, 11022 (1997) 10.1103/PhysRevB.56.11022
-
(1997)
Phys. Rev. B
, vol.56
, pp. 11022
-
-
Hirsch, J.E.1
-
27
-
-
57249115226
-
-
The SU (N) symmetric PAM, where N is the degeneracy of the f level and the conduction band, can be solved exactly (Ref.) for N→∞ but does not show a magnetic instability in this limit since the magnetic interaction is suppressed (Ref.) as ∼1/ N2.
-
The SU (N) symmetric PAM, where N is the degeneracy of the f level and the conduction band, can be solved exactly (Ref.) for N→∞ but does not show a magnetic instability in this limit since the magnetic interaction is suppressed (Ref.) as ∼1/ N2.
-
-
-
-
28
-
-
24444467134
-
-
10.1103/PhysRevB.29.3035
-
P. Coleman, Phys. Rev. B 29, 3035 (1984). 10.1103/PhysRevB.29.3035
-
(1984)
Phys. Rev. B
, vol.29
, pp. 3035
-
-
Coleman, P.1
-
29
-
-
0023451795
-
-
10.1080/00018738700101082
-
D. M. Newns and N. Read, Adv. Phys. 36, 799 (1987). 10.1080/ 00018738700101082
-
(1987)
Adv. Phys.
, vol.36
, pp. 799
-
-
Newns, D.M.1
Read, N.2
-
30
-
-
57249099141
-
-
Without hybridization this choice of the chemical potential results in a half-filled f level. For nonzero hybridization, this does so only approximately.
-
Without hybridization this choice of the chemical potential results in a half-filled f level. For nonzero hybridization, this does so only approximately.
-
-
-
-
31
-
-
0030528685
-
-
For reviews, see 10.1103/RevModPhys.68.13;
-
For reviews, see A. Georges, G. Kotliar, W. Krauth, and M. Rozenberg, Rev. Mod. Phys. 68, 13 (1996) 10.1103/RevModPhys.68.13
-
(1996)
Rev. Mod. Phys.
, vol.68
, pp. 13
-
-
Georges, A.1
Kotliar, G.2
Krauth, W.3
Rozenberg, M.4
-
35
-
-
0000946817
-
-
10.1103/PhysRevLett.56.2521
-
J. E. Hirsch and R. M. Fye, Phys. Rev. Lett. 56, 2521 (1986). 10.1103/PhysRevLett.56.2521
-
(1986)
Phys. Rev. Lett.
, vol.56
, pp. 2521
-
-
Hirsch, J.E.1
Fye, R.M.2
-
37
-
-
0036538405
-
-
10.1103/PhysRevB.65.134433
-
K. Byczuk and D. Vollhardt, Phys. Rev. B 65, 134433 (2002). 10.1103/PhysRevB.65.134433
-
(2002)
Phys. Rev. B
, vol.65
, pp. 134433
-
-
Byczuk, K.1
Vollhardt, D.2
-
38
-
-
33749467133
-
-
10.1103/PhysRevB.74.155102
-
S. Sakai, R. Arita, K. Held, and H. Aoki, Phys. Rev. B 74, 155102 (2006). 10.1103/PhysRevB.74.155102
-
(2006)
Phys. Rev. B
, vol.74
, pp. 155102
-
-
Sakai, S.1
Arita, R.2
Held, K.3
Aoki, H.4
-
40
-
-
4243115147
-
-
This formula can be derived by a multiorbital generalization of the Schrieffer-Wolff transformation; see 10.1007/BF01325759
-
This formula can be derived by a multiorbital generalization of the Schrieffer-Wolff transformation; see B. Mühlschlegel, Z. Phys. 208, 94 (1968). 10.1007/BF01325759
-
(1968)
Z. Phys.
, vol.208
, pp. 94
-
-
Mühlschlegel, B.1
|