메뉴 건너뛰기




Volumn 30, Issue 3, 2009, Pages 298-305

Resampling-based selective clustering ensembles

Author keywords

Clustering analysis; Clustering ensembles; Resampling technique

Indexed keywords

CLUSTERING ALGORITHMS; FLOW OF SOLIDS;

EID: 57249104712     PISSN: 01678655     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patrec.2008.10.007     Document Type: Article
Times cited : (60)

References (30)
  • 2
    • 57249114797 scopus 로고    scopus 로고
    • Blake, C.L., Merz, C.J., 1998. UCI repository of machine learning databases. Available from: .
    • Blake, C.L., Merz, C.J., 1998. UCI repository of machine learning databases. Available from: .
  • 3
    • 57249091026 scopus 로고    scopus 로고
    • Caruana, R., Niculescu-Mizil, A., Crew, G., Ksikes, A., 2004. Ensemble selection from libraries of models. In: Proc Internat. Conf. on Machine Learning, pp. 18-25.
    • Caruana, R., Niculescu-Mizil, A., Crew, G., Ksikes, A., 2004. Ensemble selection from libraries of models. In: Proc Internat. Conf. on Machine Learning, pp. 18-25.
  • 5
    • 40249111954 scopus 로고    scopus 로고
    • Faceli, K., de Carvalho, A., de Souto, N., 2006. Multi-objective clustering ensemble. In: Internat. Conf. Hybrid Intelligent Systems, pp. 51-51.
    • Faceli, K., de Carvalho, A., de Souto, N., 2006. Multi-objective clustering ensemble. In: Internat. Conf. Hybrid Intelligent Systems, pp. 51-51.
  • 6
    • 1942517297 scopus 로고    scopus 로고
    • Fern, X.Z., Brodley, C.E., 2003. Random projection for high dimensional data clustering. In: Proc. Internat. Conf. on Machine Learning, pp. 186-193.
    • Fern, X.Z., Brodley, C.E., 2003. Random projection for high dimensional data clustering. In: Proc. Internat. Conf. on Machine Learning, pp. 186-193.
  • 7
    • 57249096339 scopus 로고    scopus 로고
    • Fern, X.Z., Brodley, C.E. 2006. Clustering ensembles for high dimensional clustering: An empirical study. Technical report CS06-30-02, Oregon State University.
    • Fern, X.Z., Brodley, C.E. 2006. Clustering ensembles for high dimensional clustering: An empirical study. Technical report CS06-30-02, Oregon State University.
  • 9
    • 21244468777 scopus 로고    scopus 로고
    • Combining multiple clusterings using evidence accumulation
    • Fred A., and Jain A.K. Combining multiple clusterings using evidence accumulation. IEEE Trans. Pattern Anal. Machine Intell. 27 (2005) 835-850
    • (2005) IEEE Trans. Pattern Anal. Machine Intell. , vol.27 , pp. 835-850
    • Fred, A.1    Jain, A.K.2
  • 10
    • 32344432837 scopus 로고    scopus 로고
    • Gondek, D., Hofmann, T., 2005. Non-redundant clustering with conditional ensembles. In: ACM SIGKDD Internat. Conf. on Knowledge Discovery in Data Mining, pp.70-77.
    • Gondek, D., Hofmann, T., 2005. Non-redundant clustering with conditional ensembles. In: ACM SIGKDD Internat. Conf. on Knowledge Discovery in Data Mining, pp.70-77.
  • 12
    • 0000008146 scopus 로고
    • Comparing partitions
    • Hubert L., and Arabie P. Comparing partitions. J. Classif. 2 (1985) 193-218
    • (1985) J. Classif. , vol.2 , pp. 193-218
    • Hubert, L.1    Arabie, P.2
  • 14
    • 15744388753 scopus 로고    scopus 로고
    • Kuncheva, L.I., Hadjitodorov, S.T., 2004. Using diversity in cluster ensemble. In: Proc. IEEE Internat. Conf. on System, Man and Cybernetics, pp. 1214-1219.
    • Kuncheva, L.I., Hadjitodorov, S.T., 2004. Using diversity in cluster ensemble. In: Proc. IEEE Internat. Conf. on System, Man and Cybernetics, pp. 1214-1219.
  • 15
    • 0035514007 scopus 로고    scopus 로고
    • Resampling method for unsupervised estimation of cluster validity
    • Levine E., and Domany E. Resampling method for unsupervised estimation of cluster validity. Neural Comput. 13 (2001) 2573-2593
    • (2001) Neural Comput. , vol.13 , pp. 2573-2593
    • Levine, E.1    Domany, E.2
  • 16
    • 33750591834 scopus 로고    scopus 로고
    • Clustering algorithm based selective ensemble
    • Li G., Yang J., Kong A.S., and Chen N. Clustering algorithm based selective ensemble. J. Fudan Univ. 43 (2004) 689-695
    • (2004) J. Fudan Univ. , vol.43 , pp. 689-695
    • Li, G.1    Yang, J.2    Kong, A.S.3    Chen, N.4
  • 17
    • 3042595860 scopus 로고    scopus 로고
    • Minaei-Bidgoli, B., Topchy, A., Punch, W.F., 2004. Ensembles of partitions via data resampling. In: Internat. Conf. on Information Technology: Coding and Computing, p. 188.
    • Minaei-Bidgoli, B., Topchy, A., Punch, W.F., 2004. Ensembles of partitions via data resampling. In: Internat. Conf. on Information Technology: Coding and Computing, p. 188.
  • 18
    • 0038724494 scopus 로고    scopus 로고
    • Consensus clustering: A resampling-based method for class discovery and visualization of gene expression moscovery data
    • Monti S., Tamaya P., Mesirov J., and Golub T. Consensus clustering: A resampling-based method for class discovery and visualization of gene expression moscovery data. J. Mach. Learn. 52 (2003) 91-118
    • (2003) J. Mach. Learn. , vol.52 , pp. 91-118
    • Monti, S.1    Tamaya, P.2    Mesirov, J.3    Golub, T.4
  • 19
    • 0032596573 scopus 로고    scopus 로고
    • Opitz, D., 1999. Feature selection for ensembles. In: Proc. National Conf. on Artifical Intelligence, vol. 7, pp. 379-384.
    • Opitz, D., 1999. Feature selection for ensembles. In: Proc. National Conf. on Artifical Intelligence, vol. 7, pp. 379-384.
  • 20
    • 84950632109 scopus 로고
    • Objective criteria for the evaluation of clustering methods
    • Rand W.M. Objective criteria for the evaluation of clustering methods. J. Amer. Statist. Assoc. 66 (1971) 846-850
    • (1971) J. Amer. Statist. Assoc. , vol.66 , pp. 846-850
    • Rand, W.M.1
  • 21
    • 57249091021 scopus 로고    scopus 로고
    • Strehl, A., 2002. Relationship-based clustering and cluster ensembles for high-dimensional data mining. Dissertation of The University of Texas at Austin.
    • Strehl, A., 2002. Relationship-based clustering and cluster ensembles for high-dimensional data mining. Dissertation of The University of Texas at Austin.
  • 22
    • 0041965980 scopus 로고    scopus 로고
    • Clustering ensemble - a knowledge reuse framework for combining multiple partitions
    • Strehl A., and Ghosh J. Clustering ensemble - a knowledge reuse framework for combining multiple partitions. J. Mach. Learn. Res. 3 (2002) 583-617
    • (2002) J. Mach. Learn. Res. , vol.3 , pp. 583-617
    • Strehl, A.1    Ghosh, J.2
  • 23
    • 10044266281 scopus 로고    scopus 로고
    • Topchy, A., Minaei, B., Jain, A.K., Punch, W., 2004a. Adaptive clustering ensembles. In: Internat. Conf. on Pattern Recognition, pp. 272-275.
    • Topchy, A., Minaei, B., Jain, A.K., Punch, W., 2004a. Adaptive clustering ensembles. In: Internat. Conf. on Pattern Recognition, pp. 272-275.
  • 24
    • 19544373948 scopus 로고    scopus 로고
    • Topchy, A., Law, M., Jain, A.K., Fred, A., 2004b. Analysis of consensus partition in cluster ensemble. In: Internat. Conf. on Data Mining, pp. 225-232.
    • Topchy, A., Law, M., Jain, A.K., Fred, A., 2004b. Analysis of consensus partition in cluster ensemble. In: Internat. Conf. on Data Mining, pp. 225-232.
  • 26
    • 13844274775 scopus 로고    scopus 로고
    • Tseng, G.C., Wong, W.H., 2003. A method for tight clustering: With application to microarray. In: Proc. IEEE Computer Society Bioinformatics Conf., pp. 396-397.
    • Tseng, G.C., Wong, W.H., 2003. A method for tight clustering: With application to microarray. In: Proc. IEEE Computer Society Bioinformatics Conf., pp. 396-397.
  • 27
    • 0033893813 scopus 로고    scopus 로고
    • Optimal linear combination of neural networks for improving classification performance
    • Ueda N. Optimal linear combination of neural networks for improving classification performance. IEEE Trans. Pattern Anal. Machine Intell. (2000) 207-215
    • (2000) IEEE Trans. Pattern Anal. Machine Intell. , pp. 207-215
    • Ueda, N.1
  • 28
    • 84942113441 scopus 로고    scopus 로고
    • Yang, Y., Kamel, M., 2003. Clustering ensemble using swarm intelligence. In: IEEE Swarm Intelligence Sysposium, pp. 65-71.
    • Yang, Y., Kamel, M., 2003. Clustering ensemble using swarm intelligence. In: IEEE Swarm Intelligence Sysposium, pp. 65-71.
  • 29
    • 33745794076 scopus 로고    scopus 로고
    • Ensemble pruning via semi-definite programming
    • Zhang Y., Burer S., and Street W. Ensemble pruning via semi-definite programming. J. Mach. Learn. Res. 7 (2006) 1315-1338
    • (2006) J. Mach. Learn. Res. , vol.7 , pp. 1315-1338
    • Zhang, Y.1    Burer, S.2    Street, W.3
  • 30
    • 0036567392 scopus 로고    scopus 로고
    • Ensembling neural networks: Many could be better than all
    • Zhou Z., Wu J., and Tang J. Ensembling neural networks: Many could be better than all. Artif. Intell. 137 (2002) 239-263
    • (2002) Artif. Intell. , vol.137 , pp. 239-263
    • Zhou, Z.1    Wu, J.2    Tang, J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.