메뉴 건너뛰기




Volumn 95, Issue 4, 2008, Pages 847-858

Estimating equations for spatially correlated data in multi-dimensional space

Author keywords

Asymptotic inference; Quasilikelihood estimating equation; Spatial data

Indexed keywords


EID: 57249090975     PISSN: 00063444     EISSN: 14643510     Source Type: Journal    
DOI: 10.1093/biomet/asn046     Document Type: Article
Times cited : (14)

References (29)
  • 1
    • 0029089463 scopus 로고
    • A generalized estimating equation approach for spatially correlated data: Application to the analysis of neuroimaging data
    • ALBERT, P. A. & MCSHANE, L. M. (1995). A generalized estimating equation approach for spatially correlated data: Application to the analysis of neuroimaging data. Biometrics 51, 627-38.
    • (1995) Biometrics , vol.51 , pp. 627-638
    • ALBERT, P.A.1    MCSHANE, L.M.2
  • 2
    • 0000963886 scopus 로고
    • On the central theorem for stationary mixing random fields
    • BOLTHAUSEN, E. (1982). On the central theorem for stationary mixing random fields. Ann. Probab. 10, 1047-50.
    • (1982) Ann. Probab , vol.10 , pp. 1047-1050
    • BOLTHAUSEN, E.1
  • 3
    • 0011241944 scopus 로고
    • Approximate inference in generalized linear mixed models
    • BRESLOW, N. E. & CLAYTON, D. G. (1993). Approximate inference in generalized linear mixed models. J. Am. Statist. Assoc. 89, 9-24.
    • (1993) J. Am. Statist. Assoc , vol.89 , pp. 9-24
    • BRESLOW, N.E.1    CLAYTON, D.G.2
  • 4
    • 8644269577 scopus 로고    scopus 로고
    • Efficiency of generalized estimating equations for binary responses
    • CHAGANTY, N. R. & JOE, H. (2004). Efficiency of generalized estimating equations for binary responses. J. R. Statist. Soc. B 66, 851-60.
    • (2004) J. R. Statist. Soc. B , vol.66 , pp. 851-860
    • CHAGANTY, N.R.1    JOE, H.2
  • 5
    • 25144525561 scopus 로고    scopus 로고
    • Estimated estimating equations: Semiparametric inference for clustered/longitudinal data
    • CHIOU, J.-M. & MULLER, H.-S. (2005). Estimated estimating equations: Semiparametric inference for clustered/longitudinal data. J. R. Statist. Soc. B 67, 531-53.
    • (2005) J. R. Statist. Soc. B , vol.67 , pp. 531-553
    • CHIOU, J.-M.1    MULLER, H.-S.2
  • 6
    • 0036489064 scopus 로고    scopus 로고
    • Latent variable analysis of multivariate spatial data
    • CHRISTENSEN, W. F. & AMEMIYA, Y. (2002). Latent variable analysis of multivariate spatial data. J. Am. Statist. Assoc. 97, 302-17.
    • (2002) J. Am. Statist. Assoc , vol.97 , pp. 302-317
    • CHRISTENSEN, W.F.1    AMEMIYA, Y.2
  • 8
    • 0442325070 scopus 로고    scopus 로고
    • Classes of nonseparable, spatio-temporal stationary covariance functions
    • CRESSIE, N. A. & HUANG, H.-C. (1999). Classes of nonseparable, spatio-temporal stationary covariance functions. J. Am. Statist. Assoc. 94, 1330-40.
    • (1999) J. Am. Statist. Assoc , vol.94 , pp. 1330-1340
    • CRESSIE, N.A.1    HUANG, H.-C.2
  • 10
    • 0022490517 scopus 로고
    • Analyzing cross-classified data with inherent spatial dependence
    • FINGLETON, B. (1986). Analyzing cross-classified data with inherent spatial dependence. Geog. Anal. 18, 48-61.
    • (1986) Geog. Anal , vol.18 , pp. 48-61
    • FINGLETON, B.1
  • 13
    • 0442278076 scopus 로고    scopus 로고
    • Window subsampling of estimating functions with application to regression models
    • HEAGERTY, P. J. & LUMLEY, T. (2000). Window subsampling of estimating functions with application to regression models. J. Am. Statist. Assoc. 95, 197-211.
    • (2000) J. Am. Statist. Assoc , vol.95 , pp. 197-211
    • HEAGERTY, P.J.1    LUMLEY, T.2
  • 15
    • 0030487957 scopus 로고    scopus 로고
    • A minimax approach to consistency and efficiency for estimating equations
    • LI, B. (1996). A minimax approach to consistency and efficiency for estimating equations. Ann. Statist. 24, 1283-97.
    • (1996) Ann. Statist , vol.24 , pp. 1283-1297
    • LI, B.1
  • 17
    • 22944434166 scopus 로고    scopus 로고
    • Analysis of spatially binary data by quasi-likelihood estimating equations
    • LIN, P.-S. & CLAYTON, M. K. (2005). Analysis of spatially binary data by quasi-likelihood estimating equations. Ann. Statist. 33, 542-55.
    • (2005) Ann. Statist , vol.33 , pp. 542-555
    • LIN, P.-S.1    CLAYTON, M.K.2
  • 18
    • 0001898235 scopus 로고
    • Quasi-likelihood functions
    • MCCULLAGH, P. (1983). Quasi-likelihood functions. Ann. Statist. 11, 59-67.
    • (1983) Ann. Statist , vol.11 , pp. 59-67
    • MCCULLAGH, P.1
  • 19
    • 0001560337 scopus 로고
    • Quasi-likelihood and estimating functions
    • Ed. D. V. Hinkley, N. Reid and E. J. Snell, pp, New York: Chapman and Hall
    • MCCULLAGH, P. (1991). Quasi-likelihood and estimating functions. In Statistical Theory and Modelling, Ed. D. V. Hinkley, N. Reid and E. J. Snell, pp. 265-86. New York: Chapman and Hall.
    • (1991) Statistical Theory and Modelling , pp. 265-286
    • MCCULLAGH, P.1
  • 21
    • 0030956486 scopus 로고    scopus 로고
    • A latent process regression model for spatially correlated count data
    • MCSHANE, L. M., ALBERT, P. S. & PALMATIER, M. A. (1997). A latent process regression model for spatially correlated count data. Biometrics 53, 698-706.
    • (1997) Biometrics , vol.53 , pp. 698-706
    • MCSHANE, L.M.1    ALBERT, P.S.2    PALMATIER, M.A.3
  • 22
    • 0024266392 scopus 로고
    • Correlated binary regression with covariates specific to each binary observation
    • PRENTICE, R. L. (1988). Correlated binary regression with covariates specific to each binary observation. Biometrics 44, 1033-48.
    • (1988) Biometrics , vol.44 , pp. 1033-1048
    • PRENTICE, R.L.1
  • 23
    • 0000457248 scopus 로고
    • A bound for the error in the normal approximation to the distribution of a sum of dependent random variables
    • Ed. L. LeCAM, J. Neyman and E. L. Scott, pp, Berkeley, CA: University of California Press
    • STEIN, C. (1972). A bound for the error in the normal approximation to the distribution of a sum of dependent random variables, In Proc. 6th Berkley Symp. Math. Statist. Prob. Vol. 2, Ed. L. LeCAM, J. Neyman and E. L. Scott, pp. 538-602. Berkeley, CA: University of California Press.
    • (1972) Proc. 6th Berkley Symp. Math. Statist. Prob , vol.2 , pp. 538-602
    • STEIN, C.1
  • 25
    • 0016335739 scopus 로고
    • Quasi-likelihood functions, generalized linear models, and the Gauss-Newton method
    • WEDDERBURN, R. W. M. (1974). Quasi-likelihood functions, generalized linear models, and the Gauss-Newton method. Biometrika 61, 439-47.
    • (1974) Biometrika , vol.61 , pp. 439-447
    • WEDDERBURN, R.W.M.1
  • 26
    • 0013136164 scopus 로고
    • A regression model for time series of counts
    • ZEGER, S. L. (1988). A regression model for time series of counts. Biometrika 75, 621-9.
    • (1988) Biometrika , vol.75 , pp. 621-629
    • ZEGER, S.L.1
  • 27
    • 12244310929 scopus 로고
    • Correlated binary regression using a quadratic exponential model
    • ZHAO, L. P. & PRENTICE, R. L. (1990). Correlated binary regression using a quadratic exponential model. Biometrika 77, 642-8.
    • (1990) Biometrika , vol.77 , pp. 642-648
    • ZHAO, L.P.1    PRENTICE, R.L.2
  • 28
    • 27744588060 scopus 로고    scopus 로고
    • Generalized linear latent variable models for repeated measures of spatially correlated multivariate data
    • ZHU, J., ERICKHOFF, J. C. & YAN, P. (2005a). Generalized linear latent variable models for repeated measures of spatially correlated multivariate data. Biometrics 61, 674-83.
    • (2005) Biometrics , vol.61 , pp. 674-683
    • ZHU, J.1    ERICKHOFF, J.C.2    YAN, P.3
  • 29
    • 22244465219 scopus 로고    scopus 로고
    • Modeling spatial-temporal binary data using Markov random fields
    • ZHU, J., HUANG, H.-C. & WU, J. (2005b). Modeling spatial-temporal binary data using Markov random fields. J. Agric. Biol. Envir. Statist. 10, 212-25.
    • (2005) J. Agric. Biol. Envir. Statist , vol.10 , pp. 212-225
    • ZHU, J.1    HUANG, H.-C.2    WU, J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.