메뉴 건너뛰기




Volumn 7, Issue 3, 2008, Pages 510-515

PCA-ICA ensembled intrusion detection system by Pareto-Optimal optimization

Author keywords

Ensemble; Feature extraction; Intrusion detection; Pareto optimal

Indexed keywords

COMPUTER CRIME; FEATURE EXTRACTION; HEMODYNAMICS; INDEPENDENT COMPONENT ANALYSIS; PARETO PRINCIPLE; SIGNAL DETECTION; SUPPORT VECTOR MACHINES;

EID: 57149112354     PISSN: 18125638     EISSN: 18125646     Source Type: Journal    
DOI: 10.3923/itj.2008.510.515     Document Type: Article
Times cited : (5)

References (19)
  • 1
    • 7444246843 scopus 로고    scopus 로고
    • Abbass, H.A., 2003. Pareto neuro-ensembles. Adv. Artificial Intel, 2903: 554-566.
    • Abbass, H.A., 2003. Pareto neuro-ensembles. Adv. Artificial Intel, 2903: 554-566.
  • 3
    • 57149085099 scopus 로고    scopus 로고
    • Blake and Merz, 1998. UCI repository of machine learning databases. http://www.ics.uci.edu/mlearn/MLRepository.html: Technical Report of Department of Information and Computer Science, University of California, Irvine.
    • Blake and Merz, 1998. UCI repository of machine learning databases. http://www.ics.uci.edu/mlearn/MLRepository.html: Technical Report of Department of Information and Computer Science, University of California, Irvine.
  • 4
    • 10444221886 scopus 로고    scopus 로고
    • Diversity creation methods: A survey and categorisation
    • Brown, G., J. Wyatt, R. Harris and X. Yao, 2005. Diversity creation methods: A survey and categorisation. Inform. Fusion, 6 (1): 5-20.
    • (2005) Inform. Fusion , vol.6 , Issue.1 , pp. 5-20
    • Brown, G.1    Wyatt, J.2    Harris, R.3    Yao, X.4
  • 5
    • 24944559226 scopus 로고    scopus 로고
    • Building an intrusion detection system based on support vector machine and genetic algorithm. Advances in Neural Networks -ISNN 2005, Pt 3
    • Chen, R.C., J. Chen, T.S. Chen, C. Hsieh, T.Y. Chen and K.Y. Wu, 2005. Building an intrusion detection system based on support vector machine and genetic algorithm. Advances in Neural Networks -ISNN 2005, Pt 3, Proceedings, 3498: 409-414.
    • (2005) Proceedings , vol.3498 , pp. 409-414
    • Chen, R.C.1    Chen, J.2    Chen, T.S.3    Hsieh, C.4    Chen, T.Y.5    Wu, K.Y.6
  • 7
    • 24044441270 scopus 로고    scopus 로고
    • Intrusion detection method based on independent component analysis and support vector machine
    • Gu, Y., J. Zheng, J. Sun and Z. Xu, 2005. Intrusion detection method based on independent component analysis and support vector machine. J. Xi'an Jiaotong Univ., 39 (8): 876-869.
    • (2005) J. Xi'an Jiaotong Univ , vol.39 , Issue.8 , pp. 876-869
    • Gu, Y.1    Zheng, J.2    Sun, J.3    Xu, Z.4
  • 8
    • 0036613003 scopus 로고    scopus 로고
    • An artificial immune system architecture for computer security applications
    • Harmer, P.K., P.D. Williams, G.H. Gunsch and G.B. Lamont, 2002. An artificial immune system architecture for computer security applications. IEEE Trans. Evol. Comput, 6 (3): 252-280.
    • (2002) IEEE Trans. Evol. Comput , vol.6 , Issue.3 , pp. 252-280
    • Harmer, P.K.1    Williams, P.D.2    Gunsch, G.H.3    Lamont, G.B.4
  • 9
    • 2142779130 scopus 로고    scopus 로고
    • Cost effective management frameworks: The impact of IDS deployment technique on threat mitigation
    • Iheagwara, C, A. Blyth, T. Kevin and D. Kinn, 2004. Cost effective management frameworks: The impact of IDS deployment technique on threat mitigation. Inform. Software Technol., 46 (10): 651-664.
    • (2004) Inform. Software Technol , vol.46 , Issue.10 , pp. 651-664
    • Iheagwara, C.1    Blyth, A.2    Kevin, T.3    Kinn, D.4
  • 10
    • 0037411435 scopus 로고    scopus 로고
    • The neural network models for IDS based on the asymmetric costs of false negative errors and false positive errors
    • Joo, D., T. Hong and I. Han, 2003. The neural network models for IDS based on the asymmetric costs of false negative errors and false positive errors. Exp. Syst. Appl, 25(1): 69-75.
    • (2003) Exp. Syst. Appl , vol.25 , Issue.1 , pp. 69-75
    • Joo, D.1    Hong, T.2    Han, I.3
  • 11
    • 0033169217 scopus 로고    scopus 로고
    • Multiobjective genetic optimization of diagnostic classifiers with implications for generating receiver operating characteristic curves
    • Kupinski, M.A. and M.A. Anastasio, 1999. Multiobjective genetic optimization of diagnostic classifiers with implications for generating receiver operating characteristic curves. IEEE Trans. Med. Imag., 18 (8): 675-685.
    • (1999) IEEE Trans. Med. Imag , vol.18 , Issue.8 , pp. 675-685
    • Kupinski, M.A.1    Anastasio, M.A.2
  • 12
    • 0242489523 scopus 로고    scopus 로고
    • Feature selection for intrusion detection with neural networks and support vector machines
    • Mukkamala, S. and A.H. Sung, 2003. Feature selection for intrusion detection with neural networks and support vector machines. Transportation Security Infrastructure Prot, (1822): 33-39.
    • (2003) Transportation Security Infrastructure Prot, (1822) , pp. 33-39
    • Mukkamala, S.1    Sung, A.H.2
  • 13
    • 26444436687 scopus 로고    scopus 로고
    • Using adaptive alert classification to reduce false positives in intrusion detection. Recent Adv. Intrusion Detection
    • Pietraszek, T., 2004. Using adaptive alert classification to reduce false positives in intrusion detection. Recent Adv. Intrusion Detection, Proceedings, 3224: 102-124.
    • (2004) Proceedings , vol.3224 , pp. 102-124
    • Pietraszek, T.1
  • 17
    • 0037105910 scopus 로고    scopus 로고
    • Intrusion detection techniques and approaches
    • Verwoerd, T. and R. Hunt, 2002. Intrusion detection techniques and approaches. Comput. Commun, 25(15): 1356-1365.
    • (2002) Comput. Commun , vol.25 , Issue.15 , pp. 1356-1365
    • Verwoerd, T.1    Hunt, R.2
  • 19
    • 8344251737 scopus 로고    scopus 로고
    • Comparison of BPL and RBF network in intrusion detection system. Rough Sets, Fuzzy Sets, Data Mining and Granular
    • Zhang, C.L., J. Jiang and M. Kamel, 2003. Comparison of BPL and RBF network in intrusion detection system. Rough Sets, Fuzzy Sets, Data Mining and Granular Computing, 2639: 466-470.
    • (2003) Computing , vol.2639 , pp. 466-470
    • Zhang, C.L.1    Jiang, J.2    Kamel, M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.