메뉴 건너뛰기




Volumn 73, Issue 6, 2008, Pages

Attribute-guided well-log interpolation applied to low-frequency impedance estimation

Author keywords

[No Author keywords available]

Indexed keywords

FREQUENCY ESTIMATION; INTERPOLATION; LEAST SQUARES APPROXIMATIONS; LOCATION; SEISMOLOGY; SOFTWARE ARCHITECTURE; WELL LOGGING;

EID: 57149084700     PISSN: 00168033     EISSN: None     Source Type: Journal    
DOI: 10.1190/1.2996302     Document Type: Article
Times cited : (32)

References (26)
  • 1
    • 0036801058 scopus 로고    scopus 로고
    • From 3D seismic attributes to pseudo-well-log volumes using neural networks: Practical considerations
    • lee LEEDFF 1070-485X 10.1190/1.1518436
    • Banchs, R. E., and J. M., Michelena, 2002, From 3D seismic attributes to pseudo-well-log volumes using neural networks: Practical considerations: The Leading Edge, 21, 996-1001. lee LEEDFF 1070-485X 10.1190/1.1518436
    • (2002) The Leading Edge , vol.21 , pp. 996-1001
    • Banchs, R.E.1    Michelena, J.M.2
  • 2
    • 84988281754 scopus 로고    scopus 로고
    • Interpolation of geophysical data using continuous global surfaces
    • gpy GPYSA7 0016-8033 10.1190/1.1527081
    • Billings, S. D., R. Beatson, and G. Newsam, 2002, Interpolation of geophysical data using continuous global surfaces: Geophysics, 67, 1810-1822. gpy GPYSA7 0016-8033 10.1190/1.1527081
    • (2002) Geophysics , vol.67 , pp. 1810-1822
    • Billings, S.D.1    Beatson, R.2    Newsam, G.3
  • 4
    • 2342659866 scopus 로고    scopus 로고
    • Understanding seismic attributes
    • gpy GPYSA7 0016-8033 10.1190/1.1444919
    • Brown, A. R., 2001, Understanding seismic attributes: Geophysics, 66, 47-48. gpy GPYSA7 0016-8033 10.1190/1.1444919
    • (2001) Geophysics , vol.66 , pp. 47-48
    • Brown, A.R.1
  • 5
    • 33645687409 scopus 로고    scopus 로고
    • Seismic attributes - A historical perspective
    • gpy GPYSA7 0016-8033 10.1190/1.2098670
    • Chopra, S., and K. J. Marfurt, 2005, Seismic attributes - A historical perspective: Geophysics, 70, no. 5, 3SO-28SO. gpy GPYSA7 0016-8033 10.1190/1.2098670
    • (2005) Geophysics , vol.70 , Issue.5
    • Chopra, S.1    Marfurt, K.J.2
  • 7
    • 0024163883 scopus 로고
    • Porosity from seismic data - A geostatistical approach
    • gpy GPYSA7 0016-8033 10.1190/1.1442404
    • Doyen, P. M., 1988, Porosity from seismic data - A geostatistical approach: Geophysics, 53, 1263-1275. gpy GPYSA7 0016-8033 10.1190/ 1.1442404
    • (1988) Geophysics , vol.53 , pp. 1263-1275
    • Doyen, P.M.1
  • 8
    • 0033920901 scopus 로고    scopus 로고
    • Measuring the fractal dimensions of ideal and actual objects: Implications for application in geology and geophysics
    • gji GJINEA 0956-540X 10.1046/j.1365-246X.2000.00133.x
    • Gonzato, G., F. Mulargia, and M. Ciccotti, 2000, Measuring the fractal dimensions of ideal and actual objects: Implications for application in geology and geophysics: Geophysical Journal International, 142, 108-116. gji GJINEA 0956-540X 10.1046/j.1365-246X.2000.00133.x
    • (2000) Geophysical Journal International , vol.142 , pp. 108-116
    • Gonzato, G.1    Mulargia, F.2    Ciccotti, M.3
  • 9
    • 17944394120 scopus 로고    scopus 로고
    • Geostatistics for natural resources evaluation
    • Oxford University Press
    • Goovaerts, P., 1997, Geostatistics for natural resources evaluation: Applied Geostatistics Series: Oxford University Press.
    • (1997) Applied Geostatistics Series
    • Goovaerts, P.1
  • 10
    • 85000257633 scopus 로고    scopus 로고
    • Use of multi-attribute transforms to predict log properties from seismic data
    • gpy GPYSA7 0016-8033 10.1190/1.1444899
    • Hampson, D., J. Schuelke, and J. Quirein, 2001, Use of multi-attribute transforms to predict log properties from seismic data: Geophysics, 66, 220-236. gpy GPYSA7 0016-8033 10.1190/1.1444899
    • (2001) Geophysics , vol.66 , pp. 220-236
    • Hampson, D.1    Schuelke, J.2    Quirein, J.3
  • 11
    • 33745067859 scopus 로고    scopus 로고
    • Neural networks in reservoir characterization
    • lee LEEDFF 1070-485X 10.1190/1.2193208
    • Herrera, V. M., B. Russell, and A. Flores, 2006, Neural networks in reservoir characterization: The Leading Edge, 25, 402-411. lee LEEDFF 1070-485X 10.1190/1.2193208
    • (2006) The Leading Edge , vol.25 , pp. 402-411
    • Herrera, V.M.1    Russell, B.2    Flores, A.3
  • 13
    • 0013663877 scopus 로고    scopus 로고
    • Potential risks when using seismic attributes as predictors of reservoir properties
    • lee LEEDFF 1070-485X 10.1190/1.1437610
    • Kalkomey, C. T., 1997, Potential risks when using seismic attributes as predictors of reservoir properties: The Leading Edge, 16, 247-251. lee LEEDFF 1070-485X 10.1190/1.1437610
    • (1997) The Leading Edge , vol.16 , pp. 247-251
    • Kalkomey, C.T.1
  • 14
    • 85000263461 scopus 로고    scopus 로고
    • Comparison of linear regression and a probabilistic neural network to predict porosity from 3D seismic attributes in Lower Brushy Canyon channeled sandstones, southeast New Mexico
    • gpy GPYSA7 0016-8033 10.1190/1.1487080
    • Leiphart, D. J., and B. Hart, 2001, Comparison of linear regression and a probabilistic neural network to predict porosity from 3D seismic attributes in Lower Brushy Canyon channeled sandstones, southeast New Mexico: Geophysics, 66, 1349-1358. gpy GPYSA7 0016-8033 10.1190/1.1487080
    • (2001) Geophysics , vol.66 , pp. 1349-1358
    • Leiphart, D.J.1    Hart, B.2
  • 15
    • 0032215245 scopus 로고    scopus 로고
    • Seismic-controlled nonlinear extrapolation of well parameters using neural networks
    • gpy GPYSA7 0016-8033 10.1190/1.1444496
    • Liu, Z., and J. Liu, 1998, Seismic-controlled nonlinear extrapolation of well parameters using neural networks: Geophysics, 63, 2035-2041. gpy GPYSA7 0016-8033 10.1190/1.1444496
    • (1998) Geophysics , vol.63 , pp. 2035-2041
    • Liu, Z.1    Liu, J.2
  • 16
    • 5744249209 scopus 로고
    • Perspective on equation of state calculations by fast computing machines
    • jcp JCPSA6 0021-9606 10.1063/1.1699114
    • Metropolis, N., A. Rosenbluth, M. Rosenbluth, A. Teller, and E. Teller, 1953, Perspective on equation of state calculations by fast computing machines: Journal of Chemical Physics, 21, 1087-1092. jcp JCPSA6 0021-9606 10.1063/1.1699114
    • (1953) Journal of Chemical Physics , vol.21 , pp. 1087-1092
    • Metropolis, N.1    Rosenbluth, A.2    Rosenbluth, M.3    Teller, A.4    Teller, E.5
  • 17
    • 0030445132 scopus 로고    scopus 로고
    • Sensitivity study of seismic reflection/refraction data
    • gji GJINEA 0956-540X 10.1111/j.1365-246X.1996.tb05303.x
    • Neves, F., and S. C. Singh, 1996, Sensitivity study of seismic reflection/refraction data: Geophysical Journal International, 126, 470-476. gji GJINEA 0956-540X 10.1111/j.1365-246X.1996.tb05303.x
    • (1996) Geophysical Journal International , vol.126 , pp. 470-476
    • Neves, F.1    Singh, S.C.2
  • 18
    • 34249079459 scopus 로고    scopus 로고
    • Low-frequency constrain in a priori model building for stratigraphic inversion
    • SEG, Expanded Abstracts
    • Nivlet, P., 2004, Low-frequency constrain in a priori model building for stratigraphic inversion: 74th Annual International Meeting, SEG, Expanded Abstracts, 1802-1805.
    • (2004) 74th Annual International Meeting , pp. 1802-1805
    • Nivlet, P.1
  • 19
    • 0036564915 scopus 로고    scopus 로고
    • Neural networks as an intelligence amplification tool: A review of applications
    • gpy GPYSA7 0016-8033 10.1190/1.1484539
    • Poulton, M., 2002, Neural networks as an intelligence amplification tool: A review of applications: Geophysics, 67, 979-993. gpy GPYSA7 0016-8033 10.1190/1.1484539
    • (2002) Geophysics , vol.67 , pp. 979-993
    • Poulton, M.1
  • 20
    • 84995355512 scopus 로고    scopus 로고
    • Estimation of effective porosity using geostatistics and multi-attribute transforms: A case study
    • gpy GPYSA7 0016-8033
    • Pramanik, A. G., V. Singh, R. Vig, K. Srivastava, and D. N. Tiwary, 2004, Estimation of effective porosity using geostatistics and multi-attribute transforms: A case study:, 69, 352-372. gpy GPYSA7 0016-8033
    • (2004) , vol.69 , pp. 352-372
    • Pramanik, A.G.1    Singh, V.2    Vig, R.3    Srivastava, K.4    Tiwary, D.N.5
  • 22
    • 0036170285 scopus 로고    scopus 로고
    • Combining geostatistics and multi-attribute transforms: A channel sand case study, Blackfoot oilfield (Alberta)
    • Russell, B., D. Hampson, T. Todorov, and L. Lines, 2002, Combining geostatistics and multi-attribute transforms: A channel sand case study, Blackfoot oilfield (Alberta): Journal of Petroleum Geology, 21, 97-117.
    • (2002) Journal of Petroleum Geology , vol.21 , pp. 97-117
    • Russell, B.1    Hampson, D.2    Todorov, T.3    Lines, L.4
  • 25
    • 0033795184 scopus 로고    scopus 로고
    • Using neural networks to predict porosity thickness from 3D seismic
    • Trappe, H., and C. Hellmich, 2000, Using neural networks to predict porosity thickness from 3D seismic: First Break, 18, 377-384.
    • (2000) First Break , vol.18 , pp. 377-384
    • Trappe, H.1    Hellmich, C.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.