메뉴 건너뛰기




Volumn 22, Issue 3, 2009, Pages 314-319

Non-degeneracy and uniqueness of periodic solutions for some superlinear beam equations

Author keywords

Non degeneracy; Periodic solution; Sobolev constant; Superlinear beam equation; Uniqueness

Indexed keywords

SOLUTIONS;

EID: 56949107214     PISSN: 08939659     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.aml.2008.03.027     Document Type: Article
Times cited : (12)

References (14)
  • 1
    • 22644452517 scopus 로고    scopus 로고
    • On the structure of the set of bounded solutions on a periodic Liénard equation
    • Campos J., and Torres P.J. On the structure of the set of bounded solutions on a periodic Liénard equation. Proc. Amer. Math. Soc. 127 (1999) 1453-1462
    • (1999) Proc. Amer. Math. Soc. , vol.127 , pp. 1453-1462
    • Campos, J.1    Torres, P.J.2
  • 2
    • 26844541205 scopus 로고    scopus 로고
    • Some disconjugacy criteria for differential equations with oscillatory coefficients
    • Clark S., and Hinton D. Some disconjugacy criteria for differential equations with oscillatory coefficients. Math. Nachr. 278 (2005) 1476-1489
    • (2005) Math. Nachr. , vol.278 , pp. 1476-1489
    • Clark, S.1    Hinton, D.2
  • 3
    • 4644326225 scopus 로고    scopus 로고
    • On the number of solutions to semilinear boundary value problems
    • Kunze M., and Ortega R. On the number of solutions to semilinear boundary value problems. Adv. Nonlinear Stud. 4 (2004) 237-249
    • (2004) Adv. Nonlinear Stud. , vol.4 , pp. 237-249
    • Kunze, M.1    Ortega, R.2
  • 4
    • 0003653890 scopus 로고
    • Dover, New York corrected reprint of 1966 edition
    • Magnus W., and Winkler S. Hill's Equations (1979), Dover, New York corrected reprint of 1966 edition
    • (1979) Hill's Equations
    • Magnus, W.1    Winkler, S.2
  • 5
    • 33751110909 scopus 로고    scopus 로고
    • Non-degeneracy and periodic solutions of semilinear differential equations with deviation
    • Meng G., Yan P., Lin X., and Zhang M. Non-degeneracy and periodic solutions of semilinear differential equations with deviation. Adv. Nonlinear Stud. 6 (2006) 563-590
    • (2006) Adv. Nonlinear Stud. , vol.6 , pp. 563-590
    • Meng, G.1    Yan, P.2    Lin, X.3    Zhang, M.4
  • 6
    • 14644431887 scopus 로고    scopus 로고
    • Some optimal bounds for bifurcation values of a superlinear periodic problem
    • Ortega R., and Zhang M. Some optimal bounds for bifurcation values of a superlinear periodic problem. Proc. Royal Soc. Edinburgh Sect. A 135 (2005) 119-132
    • (2005) Proc. Royal Soc. Edinburgh Sect. A , vol.135 , pp. 119-132
    • Ortega, R.1    Zhang, M.2
  • 7
    • 0041362004 scopus 로고    scopus 로고
    • The periodic Euler-Bernoulli equation
    • Papanicolaou V.G. The periodic Euler-Bernoulli equation. Trans. Amer. Math. Soc. 355 (2003) 3727-3759
    • (2003) Trans. Amer. Math. Soc. , vol.355 , pp. 3727-3759
    • Papanicolaou, V.G.1
  • 8
    • 0040676470 scopus 로고    scopus 로고
    • The Floquet theory of the periodic Euler-Bernoulli equation
    • Papanicolaou V.G., and Kravvaritis D. The Floquet theory of the periodic Euler-Bernoulli equation. J. Differential Equations 150 (1998) 24-41
    • (1998) J. Differential Equations , vol.150 , pp. 24-41
    • Papanicolaou, V.G.1    Kravvaritis, D.2
  • 10
    • 12744277840 scopus 로고    scopus 로고
    • Periodic solutions for ordinary differential equations with sublinear impulsive effects
    • Qian D.B., and Li X.Y. Periodic solutions for ordinary differential equations with sublinear impulsive effects. J. Math. Anal. Appl. 303 (2005) 288-303
    • (2005) J. Math. Anal. Appl. , vol.303 , pp. 288-303
    • Qian, D.B.1    Li, X.Y.2
  • 12
    • 84966215615 scopus 로고
    • Asymptotic conditions for periodic solutions of ordinary differential equations
    • Ward J.R. Asymptotic conditions for periodic solutions of ordinary differential equations. Proc. Amer. Math. Soc. 81 (1981) 415-420
    • (1981) Proc. Amer. Math. Soc. , vol.81 , pp. 415-420
    • Ward, J.R.1
  • 13
    • 0011566211 scopus 로고    scopus 로고
    • Nonresonance conditions for asymptotically positively homogeneous differential systems: The Fucik spectrum and its generalization
    • Zhang M. Nonresonance conditions for asymptotically positively homogeneous differential systems: The Fucik spectrum and its generalization. J. Differential Equations 145 (1998) 332-366
    • (1998) J. Differential Equations , vol.145 , pp. 332-366
    • Zhang, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.