-
1
-
-
0002740591
-
Geometric bounds for eigenvalues of Markov chains
-
Diaconis P., and Stroock D. Geometric bounds for eigenvalues of Markov chains. Ann. Appl. Probab. 1 1 (1991) 36-61
-
(1991)
Ann. Appl. Probab.
, vol.1
, Issue.1
, pp. 36-61
-
-
Diaconis, P.1
Stroock, D.2
-
2
-
-
51049092302
-
Small-world MCMC and convergence to multi-modal distributions: From slow mixing to fast mixing
-
Guan Y., and Krone S.M. Small-world MCMC and convergence to multi-modal distributions: From slow mixing to fast mixing. Ann. Appl. Probab. 17 (2007) 284-304
-
(2007)
Ann. Appl. Probab.
, vol.17
, pp. 284-304
-
-
Guan, Y.1
Krone, S.M.2
-
3
-
-
0024904712
-
Approximating the permanent
-
Jerrum M., and Sinclair A. Approximating the permanent. SIAM J. Comput. 18 6 (1989) 1149-1178
-
(1989)
SIAM J. Comput.
, vol.18
, Issue.6
, pp. 1149-1178
-
-
Jerrum, M.1
Sinclair, A.2
-
4
-
-
0000941412
-
2 spectrum for Markov chains and Markov processes: A generalization of Cheeger's inequality
-
2 spectrum for Markov chains and Markov processes: A generalization of Cheeger's inequality. Trans. Amer. Math. Soc. 309 2 (1988) 557-580
-
(1988)
Trans. Amer. Math. Soc.
, vol.309
, Issue.2
, pp. 557-580
-
-
Lawler, G.F.1
Sokal, A.D.2
-
5
-
-
84990634606
-
Random walks in a convex body and an improved volume algorithm
-
Lovász L., and Simonovits M. Random walks in a convex body and an improved volume algorithm. Random Structures Algorithms 4 4 (1993) 359-412
-
(1993)
Random Structures Algorithms
, vol.4
, Issue.4
, pp. 359-412
-
-
Lovász, L.1
Simonovits, M.2
-
6
-
-
14644402934
-
Numerical integration using Markov chains
-
Mathé P. Numerical integration using Markov chains. Monte Carlo Methods Appl. 5 4 (1999) 325-343
-
(1999)
Monte Carlo Methods Appl.
, vol.5
, Issue.4
, pp. 325-343
-
-
Mathé, P.1
-
7
-
-
14644417176
-
Numerical integration using V-uniformly ergodic Markov chains
-
Mathé P. Numerical integration using V-uniformly ergodic Markov chains. J. Appl. Probab. 41 4 (2004) 1104-1112
-
(2004)
J. Appl. Probab.
, vol.41
, Issue.4
, pp. 1104-1112
-
-
Mathé, P.1
-
8
-
-
36249005432
-
Simple Monte Carlo and the metropolis algorithm
-
Mathé P., and Novak E. Simple Monte Carlo and the metropolis algorithm. J. Complexity 23 4-6 (2007) 673-696
-
(2007)
J. Complexity
, vol.23
, Issue.4-6
, pp. 673-696
-
-
Mathé, P.1
Novak, E.2
-
9
-
-
0036338627
-
Markov chain decomposition for convergence rate analysis
-
Madras N., and Randall D. Markov chain decomposition for convergence rate analysis. Ann. Appl. Probab. 12 2 (2002) 581-606
-
(2002)
Ann. Appl. Probab.
, vol.12
, Issue.2
, pp. 581-606
-
-
Madras, N.1
Randall, D.2
-
13
-
-
84923618271
-
Minorization conditions and convergence rates for Markov chain Monte Carlo
-
Rosenthal J.S. Minorization conditions and convergence rates for Markov chain Monte Carlo. J. Amer. Statist. Assoc. 90 430 (1995) 558-566
-
(1995)
J. Amer. Statist. Assoc.
, vol.90
, Issue.430
, pp. 558-566
-
-
Rosenthal, J.S.1
-
14
-
-
84890736685
-
General state space Markov chains and MCMC algorithms
-
Roberts G.O., and Rosenthal J.S. General state space Markov chains and MCMC algorithms. Probab. Surv. 1 (2004) 20-71
-
(2004)
Probab. Surv.
, vol.1
, pp. 20-71
-
-
Roberts, G.O.1
Rosenthal, J.S.2
-
15
-
-
56949088780
-
-
S. Vempala, Lect.17, Random Walks and polynomial time algorithms, 2002 http://www-math.mit.edu/~vempala/random/course.html
-
S. Vempala, Lect.17, Random Walks and polynomial time algorithms, 2002 http://www-math.mit.edu/~vempala/random/course.html
-
-
-
-
16
-
-
36248998813
-
Geometric random walks: A survey
-
Vempala S. Geometric random walks: A survey. Combin. Comput. Geom. 52 (2005) 573-612
-
(2005)
Combin. Comput. Geom.
, vol.52
, pp. 573-612
-
-
Vempala, S.1
|