메뉴 건너뛰기




Volumn 47, Issue 1, 2009, Pages 145-154

Market basket analysis of crash data from large jurisdictions and its potential as a decision support tool

Author keywords

Association rules; Crash characteristics; Data mining; Traffic safety

Indexed keywords

APPLICATIONS; ASSOCIATION RULES; ASSOCIATIVE PROCESSING; COMPUTATIONAL METHODS; DATA MINING; INFORMATION MANAGEMENT; INTERSECTIONS; KNOWLEDGE MANAGEMENT; RETAIL STORES;

EID: 56949095528     PISSN: 09257535     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ssci.2007.12.001     Document Type: Article
Times cited : (116)

References (20)
  • 1
    • 0345867100 scopus 로고    scopus 로고
    • Analysis of driver injury severity levels at multiple locations using ordered probit models
    • Abdel-Aty M. Analysis of driver injury severity levels at multiple locations using ordered probit models. Journal of Safety Research 34 5 (2003) 597-603
    • (2003) Journal of Safety Research , vol.34 , Issue.5 , pp. 597-603
    • Abdel-Aty, M.1
  • 2
    • 14844346961 scopus 로고    scopus 로고
    • Exploring the overall and specific crash severity levels at signalized intersections
    • Abdel-Aty M., and Keller J. Exploring the overall and specific crash severity levels at signalized intersections. Accident Analysis and Prevention 37 3 (2005) 417-425
    • (2005) Accident Analysis and Prevention , vol.37 , Issue.3 , pp. 417-425
    • Abdel-Aty, M.1    Keller, J.2
  • 3
    • 0035689114 scopus 로고    scopus 로고
    • Development of artificial neural network models to predict driver injury severity in traffic accidents at signalized intersections
    • Abdelwahab H., and Abdel-Aty M. Development of artificial neural network models to predict driver injury severity in traffic accidents at signalized intersections. Transportation Research Record 1746 (2001) 6-13
    • (2001) Transportation Research Record , vol.1746 , pp. 6-13
    • Abdelwahab, H.1    Abdel-Aty, M.2
  • 4
    • 0027621699 scopus 로고    scopus 로고
    • Agrawal, R., Imielinski, T., Swami, A., 1993. Mining association rules between sets of items in large databases. In: Proceedings of the ACM SIGMOD, Washington DC, pp. 207-216.
    • Agrawal, R., Imielinski, T., Swami, A., 1993. Mining association rules between sets of items in large databases. In: Proceedings of the ACM SIGMOD, Washington DC, pp. 207-216.
  • 5
    • 24144490817 scopus 로고    scopus 로고
    • Older drivers and accidents: a meta analysis and data mining application on traffic accident data
    • Bayam E., Liebowitz J., and Agresti W. Older drivers and accidents: a meta analysis and data mining application on traffic accident data. Expert Systems with Applications 29 3 (2005) 598-629
    • (2005) Expert Systems with Applications , vol.29 , Issue.3 , pp. 598-629
    • Bayam, E.1    Liebowitz, J.2    Agresti, W.3
  • 6
    • 56949097216 scopus 로고    scopus 로고
    • Bayardo Jr., R., Agrawal, R., 1999. Mining the most interesting rules. In: Proceedings of the 1999 ACM-SIGKDD International Conference on Knowledge Discovery in Databases and Data Mining, pp. 145-154.
    • Bayardo Jr., R., Agrawal, R., 1999. Mining the most interesting rules. In: Proceedings of the 1999 ACM-SIGKDD International Conference on Knowledge Discovery in Databases and Data Mining, pp. 145-154.
  • 7
    • 0031162961 scopus 로고    scopus 로고
    • Brin, S., Motwani, R., Ullman, J., Tsur, S., 1997. Dynamic itemset counting and implication rules for market basket data. In: Proceedings of the 1997 ACM-SIGMOD International Conference on the Management of Data, pp. 255-264.
    • Brin, S., Motwani, R., Ullman, J., Tsur, S., 1997. Dynamic itemset counting and implication rules for market basket data. In: Proceedings of the 1997 ACM-SIGMOD International Conference on the Management of Data, pp. 255-264.
  • 8
    • 11344285341 scopus 로고    scopus 로고
    • Beyond market baskets: generalizing association rules to dependence rules
    • Brin S., Motwani R., and Silverstein C. Beyond market baskets: generalizing association rules to dependence rules. Data Mining and Knowledge Discovery 2 1 (1998) 39-68
    • (1998) Data Mining and Knowledge Discovery , vol.2 , Issue.1 , pp. 39-68
    • Brin, S.1    Motwani, R.2    Silverstein, C.3
  • 9
    • 27544497495 scopus 로고    scopus 로고
    • Analysis of freeway accident frequencies: negative binomial regression versus artificial neural network
    • Chang L.-Y. Analysis of freeway accident frequencies: negative binomial regression versus artificial neural network. Safety Science 43 8 (2005) 541-557
    • (2005) Safety Science , vol.43 , Issue.8 , pp. 541-557
    • Chang, L.-Y.1
  • 10
    • 27544446036 scopus 로고    scopus 로고
    • Data mining of tree-based models to analyze freeway accident frequency
    • Chang L.-Y., and Chen W.-C. Data mining of tree-based models to analyze freeway accident frequency. Journal of Safety Research 36 4 (2005) 365-375
    • (2005) Journal of Safety Research , vol.36 , Issue.4 , pp. 365-375
    • Chang, L.-Y.1    Chen, W.-C.2
  • 11
    • 0030156999 scopus 로고    scopus 로고
    • Fukuda, T., Morimoto, Y., Morishita, S., Tokuyama, T., 1996. Data mining using two-dimensional optimized association rules: scheme, algorithms, and visualization. In: Proceedings of the 1996 ACM-SIGMOD International Conference on the Management of Data, pp. 13-23.
    • Fukuda, T., Morimoto, Y., Morishita, S., Tokuyama, T., 1996. Data mining using two-dimensional optimized association rules: scheme, algorithms, and visualization. In: Proceedings of the 1996 ACM-SIGMOD International Conference on the Management of Data, pp. 13-23.
  • 12
    • 19944403310 scopus 로고    scopus 로고
    • Understanding spatial concentrations of road accidents using frequent item sets
    • Geurts K., Thomas I., and Wets G. Understanding spatial concentrations of road accidents using frequent item sets. Accident Analysis and Prevention 37 4 (2005) 787-799
    • (2005) Accident Analysis and Prevention , vol.37 , Issue.4 , pp. 787-799
    • Geurts, K.1    Thomas, I.2    Wets, G.3
  • 13
    • 0346723151 scopus 로고    scopus 로고
    • A Method for relating type of cash to traffic flow characteristics on urban freeways
    • Golob T., and Recker W. A Method for relating type of cash to traffic flow characteristics on urban freeways. Transportation Research - Part A, Policy and Practice 38 (2004) 52-80
    • (2004) Transportation Research - Part A, Policy and Practice , vol.38 , pp. 52-80
    • Golob, T.1    Recker, W.2
  • 14
    • 0037333762 scopus 로고    scopus 로고
    • Accident prediction models for urban roads
    • Greibe P. Accident prediction models for urban roads. Accident Analysis and Prevention 35 2 (2005) 273-285
    • (2005) Accident Analysis and Prevention , vol.35 , Issue.2 , pp. 273-285
    • Greibe, P.1
  • 16
    • 56949088443 scopus 로고    scopus 로고
    • SAS Institute, Cary, NC
    • SAS Institute. Getting started with enterprise miner software. Release 4.1 (2001), SAS Institute, Cary, NC
    • (2001) Release 4.1
    • SAS Institute1
  • 18
    • 56949103691 scopus 로고    scopus 로고
    • Traffic Safety Facts, 2001. National Highway Traffic Safety Administration. National Center for Statistics and Analysis.
    • Traffic Safety Facts, 2001. National Highway Traffic Safety Administration. National Center for Statistics and Analysis.
  • 19
    • 0242456800 scopus 로고    scopus 로고
    • Tuzhilin, A., Adomavicius, G., 2002. Handling very large numbers of association rules in the analysis of microarray data. In: Proceedings of the 2002 ACM-SIGKDD International Conference on Knowledge discovery and Data Mining, pp. 396-404.
    • Tuzhilin, A., Adomavicius, G., 2002. Handling very large numbers of association rules in the analysis of microarray data. In: Proceedings of the 2002 ACM-SIGKDD International Conference on Knowledge discovery and Data Mining, pp. 396-404.
  • 20
    • 0242456825 scopus 로고    scopus 로고
    • Tuzhilin, A., Liu, B., 2002. Querying multiple sets of discovered rules. In: Proceedings of the 2002 ACM-SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 52-60.
    • Tuzhilin, A., Liu, B., 2002. Querying multiple sets of discovered rules. In: Proceedings of the 2002 ACM-SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 52-60.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.