-
3
-
-
36449006832
-
-
0021-9606 10.1063/1.467176.
-
J. Cao and G. A. Voth, J. Chem. Phys. 0021-9606 10.1063/1.467176 100, 5106 (1994).
-
(1994)
J. Chem. Phys.
, vol.100
, pp. 5106
-
-
Cao, J.1
Voth, G.A.2
-
4
-
-
0000332705
-
-
0021-9606 10.1063/1.479515.
-
S. Jang and G. A. Voth, J. Chem. Phys. 0021-9606 10.1063/1.479515 111, 2371 (1999).
-
(1999)
J. Chem. Phys.
, vol.111
, pp. 2371
-
-
Jang, S.1
Voth, G.A.2
-
5
-
-
43049181202
-
-
0026-8976 10.1080/00268976400100041.
-
A. D. McLachlan, Mol. Phys. 0026-8976 10.1080/00268976400100041 8, 39 (1964).
-
(1964)
Mol. Phys.
, vol.8
, pp. 39
-
-
McLachlan, A.D.1
-
6
-
-
36749112132
-
-
0021-9606 10.1063/1.439462.
-
H. D. Meyer and W. H. Miller, J. Chem. Phys. 0021-9606 10.1063/1.439462 72, 2272 (1980).
-
(1980)
J. Chem. Phys.
, vol.72
, pp. 2272
-
-
Meyer, H.D.1
Miller, W.H.2
-
7
-
-
13044304431
-
-
0021-9606 10.1063/1.459170.
-
J. C. Tully, J. Chem. Phys. 0021-9606 10.1063/1.459170 93, 1061 (1990).
-
(1990)
J. Chem. Phys.
, vol.93
, pp. 1061
-
-
Tully, J.C.1
-
8
-
-
2742590512
-
-
0301-7249 10.1039/a801824c.
-
J. C. Tully, Faraday Discuss. 0301-7249 10.1039/a801824c 110, 407 (1998).
-
(1998)
Faraday Discuss.
, vol.110
, pp. 407
-
-
Tully, J.C.1
-
14
-
-
0032398445
-
-
0301-0104 10.1016/S0301-0104(98)00027-5.
-
R. Hernandez and G. A. Voth, Chem. Phys. 0301-0104 10.1016/S0301-0104(98) 00027-5 233, 243 (1998).
-
(1998)
Chem. Phys.
, vol.233
, pp. 243
-
-
Hernandez, R.1
Voth, G.A.2
-
15
-
-
0001394688
-
-
1089-5639 10.1021/jp991433v.
-
J. Shao and N. Makri, J. Phys. Chem. A 1089-5639 10.1021/jp991433v 103, 7753 (1999).
-
(1999)
J. Phys. Chem. A
, vol.103
, pp. 7753
-
-
Shao, J.1
Makri, N.2
-
16
-
-
0001048060
-
-
1089-5639 10.1021/jp991837n.
-
J. Shao and N. Makri, J. Phys. Chem. A 1089-5639 10.1021/jp991837n 103, 9479 (1999).
-
(1999)
J. Phys. Chem. A
, vol.103
, pp. 9479
-
-
Shao, J.1
Makri, N.2
-
17
-
-
0242609133
-
-
1089-5639 10.1021/jp030497+.
-
Q. Shi and E. Geva, J. Phys. Chem. A 1089-5639 10.1021/jp030497+ 107, 9059 (2003).
-
(2003)
J. Phys. Chem. A
, vol.107
, pp. 9059
-
-
Shi, Q.1
Geva, E.2
-
19
-
-
34648837202
-
-
0021-9606 10.1063/1.2774990.
-
J. Liu and W. H. Miller, J. Chem. Phys. 0021-9606 10.1063/1.2774990 127, 114506 (2007).
-
(2007)
J. Chem. Phys.
, vol.127
, pp. 114506
-
-
Liu, J.1
Miller, W.H.2
-
21
-
-
0002511310
-
-
0096-8250 10.1103/PhysRev.140.A56.
-
N. R. Kestner, J. Jortner, M. H. Cohen, and S. A. Rice, Phys. Rev. 0096-8250 10.1103/PhysRev.140.A56 140, A56 (1965).
-
(1965)
Phys. Rev.
, vol.140
, pp. 56
-
-
Kestner, N.R.1
Jortner, J.2
Cohen, M.H.3
Rice, S.A.4
-
23
-
-
0001742173
-
-
0021-9606 10.1063/1.455057.
-
D. F. Coker and B. J. Berne, J. Chem. Phys. 0021-9606 10.1063/1.455057 89, 2128 (1988).
-
(1988)
J. Chem. Phys.
, vol.89
, pp. 2128
-
-
Coker, D.F.1
Berne, B.J.2
-
24
-
-
36449004316
-
-
0021-9606 10.1063/1.459920.
-
B. Space and D. F. Coker, J. Chem. Phys. 0021-9606 10.1063/1.459920 94, 1976 (1991).
-
(1991)
J. Chem. Phys.
, vol.94
, pp. 1976
-
-
Space, B.1
Coker, D.F.2
-
25
-
-
0000593564
-
-
0021-9606 10.1063/1.462449.
-
B. Space and D. F. Coker, J. Chem. Phys. 0021-9606 10.1063/1.462449 96, 652 (1992).
-
(1992)
J. Chem. Phys.
, vol.96
, pp. 652
-
-
Space, B.1
Coker, D.F.2
-
32
-
-
0003625787
-
-
in, edited by D. Levesque, J. P. Hansen, and J. Zinn-Justin (Elsevier, New York).
-
D. Chandler, in Liquids, Freezing and Glass Transition, edited by, D. Levesque, J. P. Hansen, and, J. Zinn-Justin, (Elsevier, New York, 1990).
-
(1990)
Liquids, Freezing and Glass Transition
-
-
Chandler, D.1
-
38
-
-
2942639536
-
-
Centroid molecular dynamics has also been employed with the Einstein relationshito obtain the diffusion coefficient. See, for example, 0021-9606 10.1063/1.473151, ();, J. Chem. Phys. 0021-9606 10.1063/1.2386157 125, 184507 (2006).
-
Centroid molecular dynamics has also been employed with the Einstein relationship to obtain the diffusion coefficient. See, for example, J. Lobaugh and G. A. Voth, J. Chem. Phys. 0021-9606 10.1063/1.473151 106, 2400 (1997); F. Paesani, W. Zhang, D. A. Case, T. E. Cheatham III, and G. A. Voth, J. Chem. Phys. 0021-9606 10.1063/1.2386157 125, 184507 (2006).
-
(1997)
J. Chem. Phys.
, vol.106
, pp. 2400
-
-
Lobaugh, J.1
Voth, G.A.2
Paesani, F.3
Zhang, W.4
Case, D.A.5
Iii, C.E.T.6
Voth, G.A.7
-
42
-
-
29744459802
-
-
0022-2488 10.1063/1.1703704.
-
G. Baym and N. D. Mermin, J. Math. Phys. 0022-2488 10.1063/1.1703704 2, 232 (1961).
-
(1961)
J. Math. Phys.
, vol.2
, pp. 232
-
-
Baym, G.1
Mermin, N.D.2
-
43
-
-
0000897350
-
-
0163-1829 10.1103/PhysRevB.44.6011.
-
J. E. Gubernatis, M. Jarrell, R. N. Silver, and D. S. Sivia, Phys. Rev. B 0163-1829 10.1103/PhysRevB.44.6011 44, 6011 (1991).
-
(1991)
Phys. Rev. B
, vol.44
, pp. 6011
-
-
Gubernatis, J.E.1
Jarrell, M.2
Silver, R.N.3
Sivia, D.S.4
-
46
-
-
56849103171
-
-
0370-1573 10.1016/0370-1573(95)00074-7.
-
M. Jarrell and J. E. Gubernatis, Phys. Rep. 0370-1573 10.1016/0370-1573(95)00074-7 269, 133 (1996).
-
(1996)
Phys. Rep.
, vol.269
, pp. 133
-
-
Jarrell, M.1
Gubernatis, J.E.2
-
48
-
-
0001636492
-
-
0021-9606 10.1063/1.480028.
-
G. Krilov and B. J. Berne, J. Chem. Phys. 0021-9606 10.1063/1.480028 111, 9147 (1999).
-
(1999)
J. Chem. Phys.
, vol.111
, pp. 9147
-
-
Krilov, G.1
Berne, B.J.2
-
49
-
-
0025288513
-
-
0175-7571 10.1007/BF02427376.
-
R. K. Bryan, Eur. Biophys. J. 0175-7571 10.1007/BF02427376 18, 165 (1990).
-
(1990)
Eur. Biophys. J.
, vol.18
, pp. 165
-
-
Bryan, R.K.1
-
51
-
-
0002902522
-
-
0036-1410 10.1137/0501006.
-
K. Miller, SIAM J. Math. Anal. 0036-1410 10.1137/0501006 1, 52 (1970).
-
(1970)
SIAM J. Math. Anal.
, vol.1
, pp. 52
-
-
Miller, K.1
-
52
-
-
0000026966
-
-
0026-8976 10.1080/00268979650027054.
-
G. J. Martyna, M. E. Tuckerman, D. J. Tobias, and M. L. Klein, Mol. Phys. 0026-8976 10.1080/00268979650027054 87, 1117 (1996).
-
(1996)
Mol. Phys.
, vol.87
, pp. 1117
-
-
Martyna, G.J.1
Tuckerman, M.E.2
Tobias, D.J.3
Klein, M.L.4
-
56
-
-
85086349339
-
-
0066-426X 10.1146/annurev.physchem.45.1.557.
-
D. Chandler and K. Leung, Annu. Rev. Phys. Chem. 0066-426X 10.1146/annurev.physchem.45.1.557 45, 557 (1994).
-
(1994)
Annu. Rev. Phys. Chem.
, vol.45
, pp. 557
-
-
Chandler, D.1
Leung, K.2
-
57
-
-
0001151361
-
-
0021-9606 10.1063/1.453403.
-
A. L. Nichols III and D. Chandler, J. Chem. Phys. 0021-9606 10.1063/1.453403 87, 6671 (1987).
-
(1987)
J. Chem. Phys.
, vol.87
, pp. 6671
-
-
Iii, N.L.A.1
Chandler, D.2
-
58
-
-
22944484720
-
-
0021-9606 10.1063/1.1839868.
-
G. A. Voth and T. D. Hone, J. Chem. Phys. 0021-9606 10.1063/1.1839868 122, 057102 (2005).
-
(2005)
J. Chem. Phys.
, vol.122
, pp. 057102
-
-
Voth, G.A.1
Hone, T.D.2
-
59
-
-
56849090158
-
-
Estimates of the DHe obtained during the RPMD simulations of the electron (see Table) and during the purely classical simulations of the solvated electron (not shown) agree to within 2% at each density. The small difference in these results is a finite system size effect; since the RPMD model correctly includes quantum dispersion of the electron, it is effectively larger than in the classical simulations. This small difference in the size of the electron changes the available space available to the solvent atoms and thus slightly effects the solvent self-diffusion coefficient.
-
Estimates of the DHe obtained during the RPMD simulations of the electron (see Table) and during the purely classical simulations of the solvated electron (not shown) agree to within 2% at each density. The small difference in these results is a finite system size effect; since the RPMD model correctly includes quantum dispersion of the electron, it is effectively larger than in the classical simulations. This small difference in the size of the electron changes the available space available to the solvent atoms and thus slightly effects the solvent self-diffusion coefficient.
-
-
-
-
60
-
-
36449006356
-
-
0021-9606 10.1063/1.465445.
-
B. Dünweg and K. Kremer, J. Chem. Phys. 0021-9606 10.1063/1.465445 99, 6983 (1993).
-
(1993)
J. Chem. Phys.
, vol.99
, pp. 6983
-
-
Dünweg, B.1
Kremer, K.2
-
61
-
-
6444220229
-
-
1089-5647 10.1021/jp0477147.
-
I. -C. Yeh and G. Hummer, J. Phys. Chem. B 1089-5647 10.1021/jp0477147 108, 15873 (2004).
-
(2004)
J. Phys. Chem. B
, vol.108
, pp. 15873
-
-
Yeh, I.-C.1
Hummer, G.2
-
62
-
-
56849110472
-
-
We find another minor system size effect at the lowest fluid density of ρ =0.1. Given the very high mobility of the electron at this density, the velocity autocorrelation function of the helium atoms does not fully decay to zero on the timescale required for the electron to travel the sidelength of the periodic box. The electron can thus encounter helium atoms with which it is dynamically correlated.
-
We find another minor system size effect at the lowest fluid density of ρ =0.1. Given the very high mobility of the electron at this density, the velocity autocorrelation function of the helium atoms does not fully decay to zero on the timescale required for the electron to travel the sidelength of the periodic box. The electron can thus encounter helium atoms with which it is dynamically correlated.
-
-
-
-
63
-
-
2942639536
-
-
0021-9606 10.1063/1.473151.
-
J. Lobaugh and G. A. Voth, J. Chem. Phys. 0021-9606 10.1063/1.473151 106, 2400 (1997).
-
(1997)
J. Chem. Phys.
, vol.106
, pp. 2400
-
-
Lobaugh, J.1
Voth, G.A.2
|