메뉴 건너뛰기




Volumn 5302 LNCS, Issue PART 1, 2008, Pages 179-192

Localizing objects with smart dictionaries

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE; COMPUTER SCIENCE; COMPUTERS;

EID: 56749185468     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-540-88682-2_15     Document Type: Conference Paper
Times cited : (112)

References (34)
  • 1
    • 33845592987 scopus 로고    scopus 로고
    • Scalable recognition with a vocabulary tree
    • Nistér, D., Stewénius, H.: Scalable recognition with a vocabulary tree. In: Proc. CVPR (2006)
    • (2006) Proc. CVPR
    • Nistér, D.1    Stewénius, H.2
  • 2
  • 3
    • 50649101051 scopus 로고    scopus 로고
    • Vector quantizing feature space with a regular lattice
    • Tuytelaars, T., Schmid, C.: Vector quantizing feature space with a regular lattice. In: Proc. ICCV (2007)
    • (2007) Proc. ICCV
    • Tuytelaars, T.1    Schmid, C.2
  • 4
    • 34948909658 scopus 로고    scopus 로고
    • Accurate object localization with shape masks
    • Marszałek, M., Schmid, C.: Accurate object localization with shape masks. In: Proc. CVPR (2007)
    • (2007) Proc. CVPR
    • Marszałek, M.1    Schmid, C.2
  • 5
    • 26444474588 scopus 로고    scopus 로고
    • Opelt, A., Pinz, A.: Object localization with boosting and weak supervision for generic object recognition. In: Kalviainen, H., Parkkinen, J., Kaarna, A. (eds.) SCIA 2005. LNCS, 3540, pp. 862-871. Springer, Heidelberg (2005)
    • Opelt, A., Pinz, A.: Object localization with boosting and weak supervision for generic object recognition. In: Kalviainen, H., Parkkinen, J., Kaarna, A. (eds.) SCIA 2005. LNCS, vol. 3540, pp. 862-871. Springer, Heidelberg (2005)
  • 7
    • 0000632147 scopus 로고    scopus 로고
    • Agglomerative information bottleneck
    • Slonim, N., Tishby, N.: Agglomerative information bottleneck. In: Proc. NIPS (1999)
    • (1999) Proc. NIPS
    • Slonim, N.1    Tishby, N.2
  • 9
    • 84898039605 scopus 로고    scopus 로고
    • Efficient clustering and matching for object class recognition
    • Leibe, B., Micolajckzyk, K., Schiele, B.: Efficient clustering and matching for object class recognition. In: Proc. BMVC (2006)
    • (2006) Proc. BMVC
    • Leibe, B.1    Micolajckzyk, K.2    Schiele, B.3
  • 10
    • 33745913325 scopus 로고    scopus 로고
    • Object categorization by learned universal visual dictionary
    • Winn, J., Criminisi, A., Minka, T.: Object categorization by learned universal visual dictionary, In: Proc. ICCV (2005)
    • (2005) Proc. ICCV
    • Winn, J.1    Criminisi, A.2    Minka, T.3
  • 11
    • 33845577440 scopus 로고    scopus 로고
    • Spatial weighting for bag-of-features
    • CVPR
    • Marszałek, M., Schmid, C.: Spatial weighting for bag-of-features. Iu: Proc. CVPR (2006)
    • (2006) Iu: Proc
    • Marszałek, M.1    Schmid, C.2
  • 12
    • 34948887733 scopus 로고    scopus 로고
    • Beyond local appearance: Category-recognition from pairwise interactions of simple features
    • Leordeanu, M., Hebert, M., Sukthankar, R.: Beyond local appearance: Category-recognition from pairwise interactions of simple features. In: Proc. CVPR (2007)
    • (2007) Proc. CVPR
    • Leordeanu, M.1    Hebert, M.2    Sukthankar, R.3
  • 13
    • 51949101221 scopus 로고    scopus 로고
    • Proximity distribution kernels for geometric context in category recognition
    • Ling, H., Soatto, S.: Proximity distribution kernels for geometric context in category recognition. In: Proc. CVPR (2007)
    • (2007) Proc. CVPR
    • Ling, H.1    Soatto, S.2
  • 14
    • 33845572523 scopus 로고    scopus 로고
    • Beyond bag of features: Spatial pyramid matching for recognizing natural scene categories
    • Lazebnik, S., Schmid, C., Ponce, J.: Beyond bag of features: Spatial pyramid matching for recognizing natural scene categories. In: Proc. CVPR (2006)
    • (2006) Proc. CVPR
    • Lazebnik, S.1    Schmid, C.2    Ponce, J.3
  • 15
    • 56749172707 scopus 로고    scopus 로고
    • Spatially coherent latent topic model for concurrent object segmentation and classification
    • Cao, L., Fei-Fei, L.: Spatially coherent latent topic model for concurrent object segmentation and classification. In: Proc. ICCV (2007)
    • (2007) Proc. ICCV
    • Cao, L.1    Fei-Fei, L.2
  • 19
    • 33745893242 scopus 로고    scopus 로고
    • Features for recognition: Viewpoint invariance for non-planar scenes
    • Vedaldi, A., Soatto, S.: Features for recognition: Viewpoint invariance for non-planar scenes. In: Proc. ICCV (2005)
    • (2005) Proc. ICCV
    • Vedaldi, A.1    Soatto, S.2
  • 20
    • 33745824267 scopus 로고    scopus 로고
    • Shotton, J., Winn, J., Rother, C., Criminisi, A.: TextonBoost: Joint appearance, shape and context modeling for multi-class object recognition and segmentation. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, 3951, pp. 1-15. Springer, Heidelberg (2006)
    • Shotton, J., Winn, J., Rother, C., Criminisi, A.: TextonBoost: Joint appearance, shape and context modeling for multi-class object recognition and segmentation. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 1-15. Springer, Heidelberg (2006)
  • 21
    • 5044223520 scopus 로고    scopus 로고
    • Multiscale conditional random fields for image labeling
    • He, X., Zemel, R., nán, M.C.P.: Multiscale conditional random fields for image labeling. In: Proc. CVPR (2004)
    • (2004) Proc. CVPR
    • He, X.1    Zemel, R.2    nán, M.C.P.3
  • 22
    • 56749168136 scopus 로고    scopus 로고
    • Liu, J., Shah, M.: Scene modeling using co-clustering. In: Proc. ICCV (2007) 23. Agarwal, A., Triggs, B.: Hyperfeatures - multilevel local coding for visual recognition. Technical report, INRIA (2005)
    • Liu, J., Shah, M.: Scene modeling using co-clustering. In: Proc. ICCV (2007) 23. Agarwal, A., Triggs, B.: Hyperfeatures - multilevel local coding for visual recognition. Technical report, INRIA (2005)
  • 26
    • 33744958383 scopus 로고    scopus 로고
    • Integral histogram: A fast way to extract histograms in cartesian spaces
    • Porikli, F.: Integral histogram: A fast way to extract histograms in cartesian spaces. In: Proc. CVPR (2005)
    • (2005) Proc. CVPR
    • Porikli, F.1
  • 28
    • 85044773291 scopus 로고    scopus 로고
    • Fast discriminative visual codebooks using randomized clustering forests
    • Moosmann, F., Triggs, B., Jurie, F.: Fast discriminative visual codebooks using randomized clustering forests. In: Proc. NIPS (2006)
    • (2006) Proc. NIPS
    • Moosmann, F.1    Triggs, B.2    Jurie, F.3
  • 31
    • 3042535216 scopus 로고    scopus 로고
    • Distinctive image features from scale-invariant keypoints
    • Lowe, D.G.: Distinctive image features from scale-invariant keypoints. IJCV 2(60), 91-110 (2004)
    • (2004) IJCV , vol.2 , Issue.60 , pp. 91-110
    • Lowe, D.G.1
  • 32
    • 33745827782 scopus 로고    scopus 로고
    • Bay, H., Tuytelaars, T., Gool, L.V.: Surf: Speeded up robust features. In: Leonardis. A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, 3951, pp. 404-417, Springer, Heidelberg (2006)
    • Bay, H., Tuytelaars, T., Gool, L.V.: Surf: Speeded up robust features. In: Leonardis. A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 404-417, Springer, Heidelberg (2006)
  • 33
    • 51949119638 scopus 로고    scopus 로고
    • A fast local descriptor for dense matching
    • Tola, E., Lepetit, V., Fua, P.: A fast local descriptor for dense matching. In: Proc. CVPR (2008)
    • (2008) Proc. CVPR
    • Tola, E.1    Lepetit, V.2    Fua, P.3
  • 34
    • 84944070277 scopus 로고    scopus 로고
    • Elgammal, A., Harwood, D., Davis, L.: Non-parametric model for background subtraction. In: Vernon, D. (ed.) ECCV 2000, LNCS, 1843, pp. 751-767, Springer, Heidelberg (2000)
    • Elgammal, A., Harwood, D., Davis, L.: Non-parametric model for background subtraction. In: Vernon, D. (ed.) ECCV 2000, LNCS, vol. 1843, pp. 751-767, Springer, Heidelberg (2000)


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.