메뉴 건너뛰기




Volumn 19, Issue 8, 2008, Pages 785-804

Modelling the effects of air pollution on health using Bayesian dynamic generalised linear models

Author keywords

Air pollution; Bayesian analysis; Dynamic generalised linear model; Markov chain monte carlo simulation

Indexed keywords

ATMOSPHERIC POLLUTION; BAYESIAN ANALYSIS; ECOLOGICAL MODELING; HEALTH IMPACT; MARKOV CHAIN; MORBIDITY; MORTALITY;

EID: 56749180595     PISSN: 11804009     EISSN: 1099095X     Source Type: Journal    
DOI: 10.1002/env.894     Document Type: Article
Times cited : (13)

References (30)
  • 1
    • 0012155902 scopus 로고
    • Normal discount bayesian models
    • Ameen J, Harrison P. 1985. Normal discount bayesian models. Bayesian Statistics 2 2: 271-198.
    • (1985) Bayesian Statistics , vol.2 , Issue.2 , pp. 271-198
    • Ameen, J.1    Harrison, P.2
  • 3
    • 0036404268 scopus 로고    scopus 로고
    • Dynamic generalized linear models with applications to environmental epidemiology
    • Chiogna M, Gaetan C. 2002. Dynamic generalized linear models with applications to environmental epidemiology. Applied Statistics 51: 453-468.
    • (2002) Applied Statistics , vol.51 , pp. 453-468
    • Chiogna, M.1    Gaetan, C.2
  • 4
    • 16544369231 scopus 로고    scopus 로고
    • The national morbidity, mortality, and air pollution study part III: Concentration-response curves and thresholds for the 20 largest US cities
    • Daniels M, Dominici F, Zeger S, Samet J. 2004. The national morbidity, mortality, and air pollution study part III: concentration-response curves and thresholds for the 20 largest US cities. HEI Project 96-97: 1-21.
    • (2004) HEI Project , vol.96-97 , pp. 1-21
    • Daniels, M.1    Dominici, F.2    Zeger, S.3    Samet, J.4
  • 6
    • 0034354440 scopus 로고    scopus 로고
    • Combining evidence on air pollution and daily mortality from the 20 largest US cities: A hierarchical modelling strategy
    • Dominici F, Samet J, Zeger S. 2000. Combining evidence on air pollution and daily mortality from the 20 largest US cities: a hierarchical modelling strategy. Journal of the Royal Statistical Society series A 163: 263-302.
    • (2000) Journal of the Royal Statistical Society series A , vol.163 , pp. 263-302
    • Dominici, F.1    Samet, J.2    Zeger, S.3
  • 7
    • 0000350343 scopus 로고
    • Posterior mode estimation by extended Kalman filtering for multivariate dynamic generalized linear models
    • Fahrmeir L. 1992. Posterior mode estimation by extended Kalman filtering for multivariate dynamic generalized linear models. Journal of the American Statistical Association 87: 501-509.
    • (1992) Journal of the American Statistical Association , vol.87 , pp. 501-509
    • Fahrmeir, L.1
  • 9
    • 0002498495 scopus 로고
    • On Kalman filtering, posterior mode estimation and fisher scoring in dynamic exponential family regression
    • Fahrmeir L, Kaufmann H. 1991. On Kalman filtering, posterior mode estimation and fisher scoring in dynamic exponential family regression. Metrika 38: 37-60.
    • (1991) Metrika , vol.38 , pp. 37-60
    • Fahrmeir, L.1    Kaufmann, H.2
  • 11
    • 0031131588 scopus 로고    scopus 로고
    • Penalized likelihood estimation and iterative Kalman smoothing for non-Gaussian dynamic regression models
    • Fahrmeir L, Wagenpfeil S. 1997. Penalized likelihood estimation and iterative Kalman smoothing for non-Gaussian dynamic regression models. Computational Statistics and Data Analysis 24: 295-320.
    • (1997) Computational Statistics and Data Analysis , vol.24 , pp. 295-320
    • Fahrmeir, L.1    Wagenpfeil, S.2
  • 12
    • 0000761371 scopus 로고
    • Applied state space modelling of non-Gaussian time series using integration-based Kalman filtering
    • Fruhwirth-Schnatter S. 1994. Applied state space modelling of non-Gaussian time series using integration-based Kalman filtering. Statistics and Computing 4: 259-269.
    • (1994) Statistics and Computing , vol.4 , pp. 259-269
    • Fruhwirth-Schnatter, S.1
  • 13
    • 0001053807 scopus 로고    scopus 로고
    • Markov chain Monte Carlo for dynamic generalized linear models
    • Gamerman D. 1998. Markov chain Monte Carlo for dynamic generalized linear models. Biometrika 85: 215-227.
    • (1998) Biometrika , vol.85 , pp. 215-227
    • Gamerman, D.1
  • 15
  • 17
    • 84950459387 scopus 로고
    • Non-Gaussian state-space modelling of nonstationary time series
    • Kitagawa G. 1987. Non-Gaussian state-space modelling of nonstationary time series. Journal of the American Statistical Association 82: 1032-1041.
    • (1987) Journal of the American Statistical Association , vol.82 , pp. 1032-1041
    • Kitagawa, G.1
  • 18
    • 0030304310 scopus 로고    scopus 로고
    • Monte Carlo filter and smoother for non-Gaussian nonlinear state-space models
    • Kitagawa G. 1996. Monte Carlo filter and smoother for non-Gaussian nonlinear state-space models. Journal of Computational and Graphical Statistics 5: 1-25.
    • (1996) Journal of Computational and Graphical Statistics , vol.5 , pp. 1-25
    • Kitagawa, G.1
  • 19
    • 0033240221 scopus 로고    scopus 로고
    • Conditional prior proposals in dynamic models
    • Knorr-Held L. 1999. Conditional prior proposals in dynamic models. Scandinavian Journal of Statistics 26: 129-144.
    • (1999) Scandinavian Journal of Statistics , vol.26 , pp. 129-144
    • Knorr-Held, L.1
  • 21
    • 0041693819 scopus 로고
    • Diagnostics in Bayesian model choice
    • Pettit L. 1986. Diagnostics in Bayesian model choice. The Statistician 35: 183-190.
    • (1986) The Statistician , vol.35 , pp. 183-190
    • Pettit, L.1
  • 22
    • 1542498394 scopus 로고    scopus 로고
    • Biologically plausible particulate air pollution mortality concentration-response functions
    • Roberts S. 2004. Biologically plausible particulate air pollution mortality concentration-response functions. Environmental Health Perspectives 112: 309-313.
    • (2004) Environmental Health Perspectives , vol.112 , pp. 309-313
    • Roberts, S.1
  • 23
    • 0034208432 scopus 로고    scopus 로고
    • The national morbidity, mortality, and air pollution study part II: Morbidity and mortality, from air pollution in the United States
    • Samet J, Zeger S, Dominici F, Curriero F, Coursac I, Dockery D, Schwartz J, Zanobetti A. 2000. The national morbidity, mortality, and air pollution study part II: morbidity and mortality, from air pollution in the United States. HEI Project 96-97: 5-47.
    • (2000) HEI Project , vol.96-97 , pp. 5-47
    • Samet, J.1    Zeger, S.2    Dominici, F.3    Curriero, F.4    Coursac, I.5    Dockery, D.6    Schwartz, J.7    Zanobetti, A.8
  • 24
    • 0036427582 scopus 로고    scopus 로고
    • Modelling multiple pollutants and multiple sites
    • Shaddick G, Wakefield J. 2002. Modelling multiple pollutants and multiple sites. Applied Statistics 51: 351-372.
    • (2002) Applied Statistics , vol.51 , pp. 351-372
    • Shaddick, G.1    Wakefield, J.2
  • 25
    • 0003258788 scopus 로고    scopus 로고
    • Likelihood analysis of non-Gaussian measurement time series
    • Shephard N, Pitt M. 1997. Likelihood analysis of non-Gaussian measurement time series. Biometrika 84: 653-667.
    • (1997) Biometrika , vol.84 , pp. 653-667
    • Shephard, N.1    Pitt, M.2
  • 29
    • 0042128693 scopus 로고    scopus 로고
    • Hierarchical regression with misaligned spatial data: Relating ambient ozone and pediatric asthma ER visits in Atlanta
    • Zhu L, Carlin B, Gelfand A. 2003. Hierarchical regression with misaligned spatial data: relating ambient ozone and pediatric asthma ER visits in Atlanta. Environmetrics 14: 537-557.
    • (2003) Environmetrics , vol.14 , pp. 537-557
    • Zhu, L.1    Carlin, B.2    Gelfand, A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.