-
2
-
-
56749122867
-
-
T. Abe and K. Nagatomo, Finiteness of conformai blocks over the projective line, in: Vertex operator algebras in mathematics and physics (Toronto, 2000), ed. S. Berman, Y. Billig, Y.-Z. Huang and J. Lepowsky, Fields Inst. Commun., 39, Amer. Math. Soc., Providence, 2003, 1-12.
-
T. Abe and K. Nagatomo, Finiteness of conformai blocks over the projective line, in: Vertex operator algebras in mathematics and physics (Toronto, 2000), ed. S. Berman, Y. Billig, Y.-Z. Huang and J. Lepowsky, Fields Inst. Commun., Vol. 39, Amer. Math. Soc., Providence, 2003, 1-12.
-
-
-
-
3
-
-
0000618828
-
Rationality in conformai field theory
-
G. Anderson and G. Moore, Rationality in conformai field theory, Comm. Math. Phys. 117 (1988) 441-450.
-
(1988)
Comm. Math. Phys
, vol.117
, pp. 441-450
-
-
Anderson, G.1
Moore, G.2
-
4
-
-
56749088665
-
-
B. Bakalov and A. Kirillov, Jr., Lectures on tensor categories and modular functors, University Lecture Series, 21, Amer. Math. Soc., Providence, RI, 2001.
-
B. Bakalov and A. Kirillov, Jr., Lectures on tensor categories and modular functors, University Lecture Series, Vol. 21, Amer. Math. Soc., Providence, RI, 2001.
-
-
-
-
5
-
-
0010882054
-
Infinite conformai symmetries in two-dimensional quantum field theory
-
A. A. Belavin, A. M. Polyakov and A. B. Zamolodchikov, Infinite conformai symmetries in two-dimensional quantum field theory, Nucl. Phys. B241 (1984) 333-380.
-
(1984)
Nucl. Phys
, vol.B241
, pp. 333-380
-
-
Belavin, A.A.1
Polyakov, A.M.2
Zamolodchikov, A.B.3
-
6
-
-
0001056693
-
Vertex algebras, Kac-Moody algebras, and the Monster
-
R.. E. Borcherds, Vertex algebras, Kac-Moody algebras, and the Monster, Proc. Natl. Acad. Sci. USA 83 (1986) 3068-3071.
-
(1986)
Proc. Natl. Acad. Sci. USA
, vol.83
, pp. 3068-3071
-
-
Borcherds, R.E.1
-
8
-
-
0003434767
-
-
Birkhäuser, Boston
-
C. Dong and J. Lepowsky, Generalized Vertex Algebras and Relative Vertex Operators, Progress in Math., Vol. 112, Birkhäuser, Boston, 1993.
-
(1993)
Generalized Vertex Algebras and Relative Vertex Operators, Progress in Math
, vol.112
-
-
Dong, C.1
Lepowsky, J.2
-
9
-
-
0034288951
-
Modular-invariance of trace functions in orbifold theory and generalized Moonshine
-
C. Dong, H. Li and G. Mason, Modular-invariance of trace functions in orbifold theory and generalized Moonshine, Comm. Math. Phys. 214 (2000) 1-56.
-
(2000)
Comm. Math. Phys
, vol.214
, pp. 1-56
-
-
Dong, C.1
Li, H.2
Mason, G.3
-
11
-
-
0030304011
-
An equivalence of fusion categories
-
M. Finkelberg, An equivalence of fusion categories, Geom. Funct. Anal. 6 (1996) 249-267.
-
(1996)
Geom. Funct. Anal
, vol.6
, pp. 249-267
-
-
Finkelberg, M.1
-
12
-
-
0002668119
-
On axiomatic approaches to vertex operator algebras and modules, preprint, 1989
-
I. B. Frenkel, Y.-Z. Huang and J. Lepowsky, On axiomatic approaches to vertex operator algebras and modules, preprint, 1989; Memoirs Amer. Math. Soc. 104 1993.
-
(1993)
Memoirs Amer. Math. Soc
, vol.104
-
-
Frenkel, I.B.1
Huang, Y.-Z.2
Lepowsky, J.3
-
13
-
-
0001761027
-
A natural representation of the Fischer-Griess Monster with the modular function J as character
-
I. B. Frenkel, J. Lepowsky and A. Meurman, A natural representation of the Fischer-Griess Monster with the modular function J as character, Proc. Natl. Acad. Sci. USA 81 (1984) 3256-3260.
-
(1984)
Proc. Natl. Acad. Sci. USA
, vol.81
, pp. 3256-3260
-
-
Frenkel, I.B.1
Lepowsky, J.2
Meurman, A.3
-
14
-
-
0003648007
-
-
Pure and Appl. Math, Academic Press, New York
-
I. B. Frenkel, J. Lepowsky, and A. Meurman, Vertex operator algebras and the Monster, Pure and Appl. Math., Vol. 134, Academic Press, New York, 1988.
-
(1988)
Vertex operator algebras and the Monster
, vol.134
-
-
Frenkel, I.B.1
Lepowsky, J.2
Meurman, A.3
-
15
-
-
0037660883
-
Rationality, quasirationality and finite W-algebras
-
M. R. Gaberdiel and A. Neitzke, Rationality, quasirationality and finite W-algebras, Comm. Math. Phys. 238 (2003) 305-331.
-
(2003)
Comm. Math. Phys
, vol.238
, pp. 305-331
-
-
Gaberdiel, M.R.1
Neitzke, A.2
-
16
-
-
0001645655
-
A theory of tensor products for module categories for a, vertex operator algebra, IV
-
Y.-Z. Huang, A theory of tensor products for module categories for a, vertex operator algebra, IV, J. Pure Appl. Alg. 100 (1995) 173-216.
-
(1995)
J. Pure Appl. Alg
, vol.100
, pp. 173-216
-
-
Huang, Y.-Z.1
-
17
-
-
0030585266
-
Virasoro vertex operator algebras, (nonmeromorphic) operator product expansion and the tensor product theory
-
Y.-Z. Huang, Virasoro vertex operator algebras, (nonmeromorphic) operator product expansion and the tensor product theory, J. Alg. 182 (1996) 201-234.
-
(1996)
J. Alg
, vol.182
, pp. 201-234
-
-
Huang, Y.-Z.1
-
18
-
-
56749147046
-
-
Y.-Z. Huang, Intertwining operator algebras, genus-zero modular functors and genus-zero conformai field theories, in: Operads: Proceedings of Renaissance Conferences, ed. J.-L. Loday, J. Stasheff, and A. A. Voronov, Contemporary Math., 202, Amer. Math. Soc., Providence, 1997, 335-355.
-
Y.-Z. Huang, Intertwining operator algebras, genus-zero modular functors and genus-zero conformai field theories, in: Operads: Proceedings of Renaissance Conferences, ed. J.-L. Loday, J. Stasheff, and A. A. Voronov, Contemporary Math., Vol. 202, Amer. Math. Soc., Providence, 1997, 335-355.
-
-
-
-
19
-
-
0001010565
-
Generalized rationality and a "Jacobi identity" for intertwining operator algebras
-
Y.-Z. Huang, Generalized rationality and a "Jacobi identity" for intertwining operator algebras, Selecta Math. (N. S.), 6 (2000), 225-267.
-
(2000)
Selecta Math. (N. S.)
, vol.6
, pp. 225-267
-
-
Huang, Y.-Z.1
-
20
-
-
20644454895
-
Differential equations and intertwining operators
-
Y.-Z. Huang, Differential equations and intertwining operators, Comm. Contemp. Math. 7 (2005), 375-400.
-
(2005)
Comm. Contemp. Math
, vol.7
, pp. 375-400
-
-
Huang, Y.-Z.1
-
21
-
-
26444584940
-
Differential equations, duality and modular invariance
-
Y.-Z. Huang, Differential equations, duality and modular invariance, Comm. Con-temp. Math.7 (2005) 649-706.
-
(2005)
Comm. Con-temp. Math
, vol.7
, pp. 649-706
-
-
Huang, Y.-Z.1
-
22
-
-
18944406392
-
Vertex operator algebras and the Verlinde conjecture
-
to appear; math.QA/0406291
-
Y.-Z. Huang, Vertex operator algebras and the Verlinde conjecture, to appear; math.QA/0406291.
-
-
-
Huang, Y.-Z.1
-
23
-
-
17244380729
-
Vertex operator algebras, the Verlinde conjecture and modular tensor categories
-
Y.-Z. Huang, Vertex operator algebras, the Verlinde conjecture and modular tensor categories, Proc. Natl. Acad. Sci. USA 102 (2005) 5352-5356.
-
(2005)
Proc. Natl. Acad. Sci. USA
, vol.102
, pp. 5352-5356
-
-
Huang, Y.-Z.1
-
24
-
-
33846176355
-
Vertex operator algebras, fusion rules and modular transformations
-
Non-commutative Geometry and Representation Theory in Mathematical Physics, ed. J. Fuchs, J. Mickelsson, G. Rozenblioum and A. Stolin, Amer. Math. Soc, Providence
-
Y.-Z. Huang, Vertex operator algebras, fusion rules and modular transformations, in: Non-commutative Geometry and Representation Theory in Mathematical Physics, ed. J. Fuchs, J. Mickelsson, G. Rozenblioum and A. Stolin, Contemporary Math. Vol. 391, Amer. Math. Soc., Providence, 2005, 135-148.
-
(2005)
Contemporary Math
, vol.391
, pp. 135-148
-
-
Huang, Y.-Z.1
-
25
-
-
0000893321
-
A theory of tensor products for module categories for a vertex operator algebra, I
-
Y.-Z. Huang and J. Lepowsky, A theory of tensor products for module categories for a vertex operator algebra, I, Selecta Math. (N.S.) 1 (1995) 699-756.
-
(1995)
Selecta Math. (N.S.)
, vol.1
, pp. 699-756
-
-
Huang, Y.-Z.1
Lepowsky, J.2
-
26
-
-
34249759387
-
A theory of tensor products for module categories for a vertex operator algebra, II
-
Y.-Z. Huang and J. Lepowsky, A theory of tensor products for module categories for a vertex operator algebra, II, Selecta Math. (N.S.) 1 (1995) 757-786.
-
(1995)
Selecta Math. (N.S.)
, vol.1
, pp. 757-786
-
-
Huang, Y.-Z.1
Lepowsky, J.2
-
27
-
-
0002624352
-
Tensor products of modules for a vertex operator-algebra and vertex tensor categories
-
ed. R. Brylinski, J.-L. Brylinski, V. Guillemin, V. Kac, Birkhäuser, Boston
-
Y.-Z. Huang and J. Lepowsky, Tensor products of modules for a vertex operator-algebra and vertex tensor categories, in: Lie Theory and Geometry, in honor of Bertram Kostant, ed. R. Brylinski, J.-L. Brylinski, V. Guillemin, V. Kac, Birkhäuser, Boston, 1994, 349-383.
-
(1994)
Lie Theory and Geometry, in honor of Bertram Kostant
, pp. 349-383
-
-
Huang, Y.-Z.1
Lepowsky, J.2
-
28
-
-
0001645660
-
A theory of tensor products for module categories for a vertex operator algebra, III
-
Y.-Z. Huang and J. Lepowsky, A theory of tensor products for module categories for a vertex operator algebra, III, J. Pure Appl. Alg. 100 (1995) 141-171.
-
(1995)
J. Pure Appl. Alg
, vol.100
, pp. 141-171
-
-
Huang, Y.-Z.1
Lepowsky, J.2
-
29
-
-
0000713264
-
Intertwining operator algebras and vertex tensor categories for affine Lie algebras
-
Y.-Z. Huang and J. Lepowsky, Intertwining operator algebras and vertex tensor categories for affine Lie algebras, Duke Math. J. 99 (1999) 113-134.
-
(1999)
Duke Math. J
, vol.99
, pp. 113-134
-
-
Huang, Y.-Z.1
Lepowsky, J.2
-
30
-
-
0004340935
-
A theory of tensor products for module categories for a vertex operator algebra, V
-
to appear
-
Y.-Z. Huang and J. Lepowsky, A theory of tensor products for module categories for a vertex operator algebra, V, to appear.
-
-
-
Huang, Y.-Z.1
Lepowsky, J.2
-
31
-
-
33749176664
-
A logarithmic generalization of tensor product theory for modules for a vertex operator algebra
-
Y.-Z. Huang, J. Lepowsky and L. Zhang, A logarithmic generalization of tensor product theory for modules for a vertex operator algebra, Internat. J. Math. 17 (2006) 975-1012.
-
(2006)
Internat. J. Math
, vol.17
, pp. 975-1012
-
-
Huang, Y.-Z.1
Lepowsky, J.2
Zhang, L.3
-
33
-
-
84960598757
-
-
D. Kazhdan and G. Lusztig, Affine Lie algebras and quantum groups, International Mathematics Research Notices (in Duke Math. J.) 2 (1991) 21-29.
-
D. Kazhdan and G. Lusztig, Affine Lie algebras and quantum groups, International Mathematics Research Notices (in Duke Math. J.) 2 (1991) 21-29.
-
-
-
-
34
-
-
84968466254
-
Tensor structures arising from affine Lie algebras, I
-
D. Kazhdan and G. Lusztig, Tensor structures arising from affine Lie algebras, I, J. Amar. Math. Soc. 6 (1993) 905-947.
-
(1993)
J. Amar. Math. Soc
, vol.6
, pp. 905-947
-
-
Kazhdan, D.1
Lusztig, G.2
-
35
-
-
84968502641
-
Tensor structures arising from affine Lie algebras, II
-
D. Kazhdan and G. Lusztig, Tensor structures arising from affine Lie algebras, II, J. Amar. Math. Soc. 6 (1993) 949-1011.
-
(1993)
J. Amar. Math. Soc
, vol.6
, pp. 949-1011
-
-
Kazhdan, D.1
Lusztig, G.2
-
36
-
-
84968516064
-
Tensor structures arising from affine Lie algebras, III
-
D. Kazhdan and G. Lusztig, Tensor structures arising from affine Lie algebras, III, J. Amar. Math. Soc. 7 (1994) 335-381.
-
(1994)
J. Amar. Math. Soc
, vol.7
, pp. 335-381
-
-
Kazhdan, D.1
Lusztig, G.2
-
37
-
-
84968469508
-
Tensor structures arising from affine Lie algebras, IV
-
D. Kazhdan and G. Lusztig, Tensor structures arising from affine Lie algebras, IV, J. Amar. Math. Soc. 7 (1994) 383-453.
-
(1994)
J. Amar. Math. Soc
, vol.7
, pp. 383-453
-
-
Kazhdan, D.1
Lusztig, G.2
-
38
-
-
17244380958
-
Prom the representation theory of vertex operator algebras to modular tensor categories in conformai field theory
-
J. Lepowsky, Prom the representation theory of vertex operator algebras to modular tensor categories in conformai field theory, Proc. Natl. Acad. Sci. USA 102 (2005) 5304-5305.
-
(2005)
Proc. Natl. Acad. Sci. USA
, vol.102
, pp. 5304-5305
-
-
Lepowsky, J.1
-
39
-
-
0033556813
-
Some finiteness properties of regular vertex operator algebras
-
H. Li, Some finiteness properties of regular vertex operator algebras, J. Alg. 212 (1999) 495-514.
-
(1999)
J. Alg
, vol.212
, pp. 495-514
-
-
Li, H.1
-
40
-
-
56749141599
-
-
M. Miyamoto, Intertwining operators and modular invariance, to appear; math. QA/0010180.
-
M. Miyamoto, Intertwining operators and modular invariance, to appear; math. QA/0010180.
-
-
-
-
41
-
-
0010798477
-
Polynomial equations for rational conformai field theories
-
G. Moore and N. Seiberg, Polynomial equations for rational conformai field theories, Phys. Lett. B 212 (1988) 451-460.
-
(1988)
Phys. Lett. B
, vol.212
, pp. 451-460
-
-
Moore, G.1
Seiberg, N.2
-
42
-
-
0346763470
-
Classical and quantum conformai field theory
-
G. Moore and N. Seiberg, Classical and quantum conformai field theory, Comm. Math. Phys. 123 (1989) 177-254.
-
(1989)
Comm. Math. Phys
, vol.123
, pp. 177-254
-
-
Moore, G.1
Seiberg, N.2
-
43
-
-
33746051135
-
-
Walter de Gruyter, Berlin
-
V. G. Turaev, Quantum invariants of knots and 3-manifolds, de Gruyter Studies in Math., Vol. 18, Walter de Gruyter, Berlin, 1994.
-
(1994)
Quantum invariants of knots and 3-manifolds, de Gruyter Studies in Math
, vol.18
-
-
Turaev, V.G.1
-
44
-
-
45549111952
-
Fusion rules and modular transformations in 2D conformai field theory
-
E. Verlinde, Fusion rules and modular transformations in 2D conformai field theory, Nucl. Phys. B300 (1988) 360-376.
-
(1988)
Nucl. Phys
, vol.B300
, pp. 360-376
-
-
Verlinde, E.1
-
47
-
-
0030551014
-
Modular invariance of characters of vertex operator algebras
-
Y. Zhu, Modular invariance of characters of vertex operator algebras, J. Amer. Math. Soc. 9 (1996) 237-307.
-
(1996)
J. Amer. Math. Soc
, vol.9
, pp. 237-307
-
-
Zhu, Y.1
|