메뉴 건너뛰기




Volumn , Issue , 2008, Pages 3327-3332

Efficient experience reuse in non-Markovian environments

Author keywords

Recurrent neural networks; Reinforcement learning

Indexed keywords

EDUCATION; INFORMATION TECHNOLOGY; INSTRUMENTS; INTERNET; LEARNING SYSTEMS; NEURAL NETWORKS; REINFORCEMENT; REINFORCEMENT LEARNING;

EID: 56749173285     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/SICE.2008.4655239     Document Type: Conference Paper
Times cited : (5)

References (29)
  • 3
    • 34948825740 scopus 로고    scopus 로고
    • Reinforcement Learning for Problems with Hidden State
    • Tech. Report, University of Toronto
    • BSamuel W. Hasinoff, "Reinforcement Learning for Problems with Hidden State", Tech. Report, University of Toronto, 2002.
    • (2002)
    • BSamuel, W.1    Hasinoff2
  • 4
    • 0000728324 scopus 로고
    • Reinforcement Learning in Markovian and Non-Markovian Environments
    • Jürgen H. Schmidhuber, "Reinforcement Learning in Markovian and Non-Markovian Environments", Advances in Neural Information Processing Systems, 3, pp. 500-506, 1991.
    • (1991) Advances in Neural Information Processing Systems , vol.3 , pp. 500-506
    • Schmidhuber, J.H.1
  • 5
    • 0004049893 scopus 로고
    • Learning from Delayed Rewards
    • PhD thesis, King's College, Cambridge, UK
    • Christopher J. C. H. Watkins, "Learning from Delayed Rewards", PhD thesis, King's College, Cambridge, UK, 1989.
    • (1989)
    • Watkins, C.J.C.H.1
  • 6
    • 0242552235 scopus 로고    scopus 로고
    • Using Suitable Action Selection Rule in Reinforcement Learning
    • Man, and Cybernetics, pp
    • Masayuki Ohta, Yoichiro Kumada, Itsuki Noda, "Using Suitable Action Selection Rule in Reinforcement Learning", IEEE International Conference on Systems, Man, and Cybernetics, pp. 4358-4363, 2003.
    • (2003) IEEE International Conference on Systems , pp. 4358-4363
    • Ohta, M.1    Kumada, Y.2    Noda, I.3
  • 7
    • 56749151758 scopus 로고    scopus 로고
    • M. Littman, Memoryless Policies: Theoretical Limitations and Practical Results, From Animal to Animats 3: Proceedings of the 3rd International Conference on Simulation and Adaptive Behavior, 1994.
    • M. Littman, "Memoryless Policies: Theoretical Limitations and Practical Results", From Animal to Animats 3: Proceedings of the 3rd International Conference on Simulation and Adaptive Behavior, 1994.
  • 9
    • 0003673017 scopus 로고
    • Reinforcement Learning for Robots Using Neural Networks
    • PhD. Thesis
    • L.-J. Lin, "Reinforcement Learning for Robots Using Neural Networks", PhD. Thesis, 1993.
    • (1993)
    • Lin, L.-J.1
  • 10
    • 84899015857 scopus 로고    scopus 로고
    • Reinforcement learning with Long Short Term Memory
    • B. Bakker, "Reinforcement learning with Long Short Term Memory", NIPS 14, 2002.
    • (2002) NIPS 14
    • Bakker, B.1
  • 14
    • 0031619061 scopus 로고    scopus 로고
    • Recurrent Neural Networks for Reinforcement Learning: Architecture, Learning Algorithms and Internal Representation
    • Ahmet Onat, Hajime Kita, and Yoshikazu Nishikawa, "Recurrent Neural Networks for Reinforcement Learning: Architecture, Learning Algorithms and Internal Representation", Proceedings of the IJCNN98, pp. 2010-2015, 1998.
    • (1998) Proceedings of the IJCNN98 , pp. 2010-2015
    • Onat, A.1    Kita, H.2    Nishikawa, Y.3
  • 16
    • 34547097516 scopus 로고    scopus 로고
    • Charles W. Anderson, Peter Michael Young, Michael R. Buehner, James N. Knight, Keith A. Bush, and Douglas C. Hittle, Robust Reinforcement Learning Control using Integral Quadratic Constraints for Recurrent Neural Networks, IEEE Transactions on Neural Networks: Special Issue on Neural Networks for Feedback Control Systems, 18(4), pp. 993-1002, 2007.
    • Charles W. Anderson, Peter Michael Young, Michael R. Buehner, James N. Knight, Keith A. Bush, and Douglas C. Hittle, "Robust Reinforcement Learning Control using Integral Quadratic Constraints for Recurrent Neural Networks", IEEE Transactions on Neural Networks: Special Issue on Neural Networks for Feedback Control Systems, 18(4), pp. 993-1002, 2007.
  • 18
    • 0033629916 scopus 로고    scopus 로고
    • Reinforcement Learning in Continuous Time and Space
    • Kenji Doya, "Reinforcement Learning in Continuous Time and Space", Neural Computation, 12, pp. 243-269, 2000.
    • (2000) Neural Computation , vol.12 , pp. 243-269
    • Doya, K.1
  • 21
    • 34447537708 scopus 로고    scopus 로고
    • Application of SONQL for Real-Time Learning of Robot Behaviors
    • Marc Carreras, Junku Yuh, Joan Batlle, and Pere Ridao, "Application of SONQL for Real-Time Learning of Robot Behaviors", Robotics and Autonomous Systems, 55(8), pp. 628-642, 2007.
    • (2007) Robotics and Autonomous Systems , vol.55 , Issue.8 , pp. 628-642
    • Carreras, M.1    Yuh, J.2    Batlle, J.3    Ridao, P.4
  • 22
    • 0000123778 scopus 로고
    • Self-Improving Reactive Agents Based on Reinforcement Learning, Planning and Teaching
    • L.-J. Lin, "Self-Improving Reactive Agents Based on Reinforcement Learning, Planning and Teaching", Machine Learning, 8, pp. 293-321, 1992.
    • (1992) Machine Learning , vol.8 , pp. 293-321
    • Lin, L.-J.1
  • 25
    • 0034293152 scopus 로고    scopus 로고
    • Learning to Forget: Continual Prediction with LSTM
    • F. A. Gers, J. Schmidhuber, and F. Cummins, "Learning to Forget: Continual Prediction with LSTM", Neural Computation, vol. 12, pp. 2451-2471, 2000.
    • (2000) Neural Computation , vol.12 , pp. 2451-2471
    • Gers, F.A.1    Schmidhuber, J.2    Cummins, F.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.