메뉴 건너뛰기




Volumn 35, Issue 12, 2008, Pages 5290-5302

Texture classification-based segmentation of lung affected by interstitial pneumonia in high-resolution CT

Author keywords

High resolution computed tomography; Interstitial pneumonia; Lung segmentation; Support vector machine; Texture

Indexed keywords

BIOLOGICAL ORGANS; COMPUTER AIDED DIAGNOSIS; COMPUTERIZED TOMOGRAPHY; IMAGE SEGMENTATION; K-MEANS CLUSTERING; STATISTICAL TESTS; SUPPORT VECTOR MACHINES; TEXTURES; WAVELET TRANSFORMS;

EID: 56749159136     PISSN: 00942405     EISSN: None     Source Type: Journal    
DOI: 10.1118/1.3003066     Document Type: Article
Times cited : (59)

References (38)
  • 1
    • 0026031087 scopus 로고
    • Chronic diffuse interstitial lung disease: Diagnostic value of chest radiography and high resolution CT
    • P. Grenier, D. Valeyre, P. Cluzel, M. W. Brauner, S. Lenoir, and C. Chastang, " Chronic diffuse interstitial lung disease: Diagnostic value of chest radiography and high resolution CT.," Radiology 179, 123-132 (1991).
    • (1991) Radiology , vol.179 , pp. 123-132
    • Grenier, P.1    Valeyre, D.2    Cluzel, P.3    Brauner, M.W.4    Lenoir, S.5    Chastang, C.6
  • 2
    • 3042757149 scopus 로고    scopus 로고
    • The use and impact of HRCT in diffuse lung disease
    • T. Franks, J. Galvin, and A. Frazier, " The use and impact of HRCT in diffuse lung disease.," Curr. Diagn. Pathol. 10, 279-290 (2004).
    • (2004) Curr. Diagn. Pathol. , vol.10 , pp. 279-290
    • Franks, T.1    Galvin, J.2    Frazier, A.3
  • 3
    • 33845988037 scopus 로고    scopus 로고
    • High-resolution computed tomography of interstitial pulmonary fibrosis
    • R. D. Suh and J. G. Goldin, " High-resolution computed tomography of interstitial pulmonary fibrosis.," Semin. Respir. Crit. Care Med. 27, 623-633 (2006).
    • (2006) Semin. Respir. Crit. Care Med. , vol.27 , pp. 623-633
    • Suh, R.D.1    Goldin, J.G.2
  • 4
    • 0028329191 scopus 로고
    • Observer variation in pattern type and extent of disease in fibrosing alveolitis on thin section computed tomography and chest radiography
    • C. D. Collins, " Observer variation in pattern type and extent of disease in fibrosing alveolitis on thin section computed tomography and chest radiography.," Clin. Radiol. 49, 236-240 (1994).
    • (1994) Clin. Radiol. , vol.49 , pp. 236-240
    • Collins, C.D.1
  • 5
    • 2942677198 scopus 로고    scopus 로고
    • HRCT diagnosis of diffuse parenchymal lung disease: Interobserver variation
    • Z. A. Aziz, " HRCT diagnosis of diffuse parenchymal lung disease: Interobserver variation.," Thorax 59, 506-511 (2004).
    • (2004) Thorax , vol.59 , pp. 506-511
    • Aziz, Z.A.1
  • 6
    • 33745662161 scopus 로고    scopus 로고
    • Automated classification of hyperlucency, fibrosis, ground glass, solid, and focal lesions in high-resolution CT of the lung
    • I. C. Sluimer, M. Prokop, I. Hartmann, and B. van Ginneken, " Automated classification of hyperlucency, fibrosis, ground glass, solid, and focal lesions in high-resolution CT of the lung.," Med. Phys. 33, 2610-2620 (2006).
    • (2006) Med. Phys. , vol.33 , pp. 2610-2620
    • Sluimer, I.C.1    Prokop, M.2    Hartmann, I.3    Van Ginneken, B.4
  • 7
  • 8
    • 0033761466 scopus 로고    scopus 로고
    • Automatic detection and quantification of ground-glass opacities on high-resolution CT using multiple neural networks: Comparison with a density mask
    • H.-U. Kauczor, K. Heitmann, C. P. Heussel, D. Marwede, T. Uthmann, and M. Thelen, " Automatic detection and quantification of ground-glass opacities on high-resolution CT using multiple neural networks: Comparison with a density mask.," AJR, Am. J. Roentgenol. 175, 1329-1334 (2000).
    • (2000) AJR, Am. J. Roentgenol. , vol.175 , pp. 1329-1334
    • Kauczor, H.-U.1    Heitmann, K.2    Heussel, C.P.3    Marwede, D.4    Uthmann, T.5    Thelen, M.6
  • 9
    • 0141743729 scopus 로고    scopus 로고
    • Quantitative computerized analysis of diffuse lung disease in high-resolution computed tomography
    • Y. Uchiyama, " Quantitative computerized analysis of diffuse lung disease in high-resolution computed tomography.," Med. Phys. 30, 2440-2454 (2003).
    • (2003) Med. Phys. , vol.30 , pp. 2440-2454
    • Uchiyama, Y.1
  • 10
    • 84903809930 scopus 로고    scopus 로고
    • IEEE Engineering in Medicine and Biology Society, 2007, Proceedings of the 29th Annual International Conference of the IEEE
    • A. Depeursinge, " Lung tissue classification using wavelet frames.," IEEE Engineering in Medicine and Biology Society, 2007, Proceedings of the 29th Annual International Conference of the IEEE, 2007, pp. 6260-6263.
    • (2007) Lung Tissue Classification Using Wavelet Frames , pp. 6260-6263
    • Depeursinge, A.1
  • 11
    • 34250207725 scopus 로고    scopus 로고
    • High resolution multidetector CT-aided tissue analysis and quantification of lung fibrosis
    • V. A. Zavaletta, B. J. Bartholmai, and R. A. Robb, " High resolution multidetector CT-aided tissue analysis and quantification of lung fibrosis.," Acad. Radiol. 14, 772-787 (2007).
    • (2007) Acad. Radiol. , vol.14 , pp. 772-787
    • Zavaletta, V.A.1    Bartholmai, B.J.2    Robb, R.A.3
  • 12
    • 4544277237 scopus 로고    scopus 로고
    • Automated lung segmentation for thoracic CT Impact on computer-aided diagnosis
    • S. G. Armato and W. F. Sensakovic, " Automated lung segmentation for thoracic CT Impact on computer-aided diagnosis.," Acad. Radiol. 11, 1011-1021 (2004).
    • (2004) Acad. Radiol. , vol.11 , pp. 1011-1021
    • Armato, S.G.1    Sensakovic, W.F.2
  • 13
    • 0034845242 scopus 로고    scopus 로고
    • Automated detection of lung nodules in CT scans: Preliminary results
    • S. G. Armato, M. L. Giger, and H. MacMahon, " Automated detection of lung nodules in CT scans: Preliminary results.," Med. Phys. 28, 1552-1561 (2001).
    • (2001) Med. Phys. , vol.28 , pp. 1552-1561
    • Armato, S.G.1    Giger, M.L.2    MacMahon, H.3
  • 14
    • 0035354205 scopus 로고    scopus 로고
    • Automatic lung segmentation for accurate quantitation of volumetric X-ray CT images
    • S. Hu, E. A. Hoffman, and J. M. Reinhardt, " Automatic lung segmentation for accurate quantitation of volumetric X-ray CT images.," IEEE Trans. Med. Imaging 20, 490-498 (2001).
    • (2001) IEEE Trans. Med. Imaging , vol.20 , pp. 490-498
    • Hu, S.1    Hoffman, E.A.2    Reinhardt, J.M.3
  • 15
    • 0031283426 scopus 로고    scopus 로고
    • Method for segmenting chest CT image data using an anatomical model: Preliminary results
    • M. S. Brown, " Method for segmenting chest CT image data using an anatomical model: Preliminary results.," IEEE Trans. Med. Imaging 16, 828-839 (1997).
    • (1997) IEEE Trans. Med. Imaging , vol.16 , pp. 828-839
    • Brown, M.S.1
  • 16
    • 28444493683 scopus 로고    scopus 로고
    • Smoothing lung segmentation surfaces in three-dimensional x-ray CT images using anatomic guidance
    • S. Ukil and J. M. Reinhardt, " Smoothing lung segmentation surfaces in three-dimensional x-ray CT images using anatomic guidance.," Acad. Radiol. 10, 1502-1511 (2005).
    • (2005) Acad. Radiol. , vol.10 , pp. 1502-1511
    • Ukil, S.1    Reinhardt, J.M.2
  • 17
    • 33646171198 scopus 로고    scopus 로고
    • 3D computerized segmentation of lung volume with computed tomography
    • X. Sun, H. Zhang, and H. Duan, " 3D computerized segmentation of lung volume with computed tomography.," Acad. Radiol. 13, 670-677 (2006).
    • (2006) Acad. Radiol. , vol.13 , pp. 670-677
    • Sun, X.1    Zhang, H.2    Duan, H.3
  • 19
    • 23844550632 scopus 로고    scopus 로고
    • Toward automated segmentation of the pathological lung in CT
    • I. C. Sluimer, M. Prokop, and B. van Ginneken, " Toward automated segmentation of the pathological lung in CT.," IEEE Trans. Med. Imaging 24, 1025-1038 (2005).
    • (2005) IEEE Trans. Med. Imaging , vol.24 , pp. 1025-1038
    • Sluimer, I.C.1    Prokop, M.2    Van Ginneken, B.3
  • 20
    • 34250896741 scopus 로고    scopus 로고
    • Semiautomated thoracic and abdominal computed tomography segmentation using the belief functions theory: Application to 3D internal dosimetry
    • A. Dieudonń, P. Zhang, P. Vannoorenberghe, and I. Gardin, " Semiautomated thoracic and abdominal computed tomography segmentation using the belief functions theory: Application to 3D internal dosimetry.," Cancer Biother. Radiopharm. 22, 275-80 (2007).
    • (2007) Cancer Biother. Radiopharm. , vol.22 , pp. 275-280
    • Dieudonń, A.1    Zhang, P.2    Vannoorenberghe, P.3    Gardin, I.4
  • 21
    • 33745644734 scopus 로고    scopus 로고
    • Computer-aided diagnosis of pulmonary nodules on CT scans: Segmentation and classification using 3D active contours
    • T. W. Way, " Computer-aided diagnosis of pulmonary nodules on CT scans: Segmentation and classification using 3D active contours.," Med. Phys. 33, 2323-2337 (2006).
    • (2006) Med. Phys. , vol.33 , pp. 2323-2337
    • Way, T.W.1
  • 22
    • 0036851688 scopus 로고    scopus 로고
    • Lung nodule detection on thoracic computed tomography images: Preliminary evaluation of a computer-aided diagnosis system
    • M. N. Gurcan, " Lung nodule detection on thoracic computed tomography images: Preliminary evaluation of a computer-aided diagnosis system.," Med. Phys. 29, 2552-2558 (2002).
    • (2002) Med. Phys. , vol.29 , pp. 2552-2558
    • Gurcan, M.N.1
  • 25
    • 56749154859 scopus 로고    scopus 로고
    • Intelligent Processing of Medical Images in the Wavelet Domain
    • in, edited by I. Maglogiannis, K. Karpouzis, M. Wallace, and J. Soldatos (IOS, Netherlands), Vol.
    • L. Costaridou, S. Skiadopoulos, P. Sakellaropoulos, and G. Panayiotakis, " Intelligent Processing of Medical Images in the Wavelet Domain.," in Emerging Artificial Intelligence Applications in Computer Engineering, edited by, I. Maglogiannis, K. Karpouzis, M. Wallace, and, J. Soldatos, (IOS, Netherlands, 2007), Vol. 160, pp. 195-213.
    • (2007) Emerging Artificial Intelligence Applications in Computer Engineering , vol.160 , pp. 195-213
    • Costaridou, L.1    Skiadopoulos, S.2    Sakellaropoulos, P.3    Panayiotakis, G.4
  • 26
    • 33846435689 scopus 로고    scopus 로고
    • A comparison of wavelet, ridgelet, and curvelet-based texture classification algorithms in computed tomography
    • L. Dettori and L. Semler, " A comparison of wavelet, ridgelet, and curvelet-based texture classification algorithms in computed tomography.," Comput. Biol. Med. 37, 486-498 (2007).
    • (2007) Comput. Biol. Med. , vol.37 , pp. 486-498
    • Dettori, L.1    Semler, L.2
  • 28
    • 34748905317 scopus 로고    scopus 로고
    • Investigation of the support vector machine algorithm to predict lung radiation-induced pneumonitis
    • S. Chen, S. Zhou, F. Yin, L. B. Marks, and S. K. Das, " Investigation of the support vector machine algorithm to predict lung radiation-induced pneumonitis.," Med. Phys. 34, 3808-3814 (2007).
    • (2007) Med. Phys. , vol.34 , pp. 3808-3814
    • Chen, S.1    Zhou, S.2    Yin, F.3    Marks, L.B.4    Das, S.K.5
  • 30
    • 0036161011 scopus 로고    scopus 로고
    • Choosing multiple parameters for support vector machines
    • O. Chapelle, V. Vapnik, O. Bousquet, and S. Mukherjee, " Choosing multiple parameters for support vector machines.," Mach. Learn. 46, 131-159 (2002).
    • (2002) Mach. Learn. , vol.46 , pp. 131-159
    • Chapelle, O.1    Vapnik, V.2    Bousquet, O.3    Mukherjee, S.4
  • 31
    • 0036738840 scopus 로고    scopus 로고
    • Efficient tuning of SVM hyperparameters using radius/margin bound and iterative algorithms
    • S. S. Keerthi, " Efficient tuning of SVM hyperparameters using radius/margin bound and iterative algorithms.," IEEE Trans. Neural Netw. 13, 1225-1229 (2002).
    • (2002) IEEE Trans. Neural Netw. , vol.13 , pp. 1225-1229
    • Keerthi, S.S.1
  • 34
    • 0020083498 scopus 로고
    • The meaning and use of the area under a receiver operating characteristic (ROC) curve
    • J. A. Hanley and B. J. McNeil, " The meaning and use of the area under a receiver operating characteristic (ROC) curve.," Radiology 143, 29-36 (1982).
    • (1982) Radiology , vol.143 , pp. 29-36
    • Hanley, J.A.1    McNeil, B.J.2
  • 36
    • 85027241930 scopus 로고    scopus 로고
    • LIDC: Datasets as a public resource. Available from: (accessed 1 August).
    • LIDC: Datasets as a public resource. Available from: http://imaging. cancer.gov/reportsandpublications/reportsandpresentations/firstdataset (accessed 1 August 2008).
    • (2008)
  • 37
    • 0041428219 scopus 로고    scopus 로고
    • Obstructive lung diseases: Texture classification for differentiation at CT
    • F. Chabat, G.-Z. Yang, and D. M. Hansell, " Obstructive lung diseases: Texture classification for differentiation at CT.," Radiology 228, 871-877 (2003).
    • (2003) Radiology , vol.228 , pp. 871-877
    • Chabat, F.1    Yang, G.-Z.2    Hansell, D.M.3
  • 38
    • 33745949494 scopus 로고    scopus 로고
    • Computer-aided classification of interstitial lung diseases via MDCT: 3D adaptive multiple feature method (3D AMFM)
    • Y. Xu, E. J. R. van Beek, Y. Hwanjo, J. Guo, G. McLennan, and E. A. Hoffman, " Computer-aided classification of interstitial lung diseases via MDCT: 3D adaptive multiple feature method (3D AMFM).," Acad. Radiol. 13, 969-978 (2006).
    • (2006) Acad. Radiol. , vol.13 , pp. 969-978
    • Xu, Y.1    Van Beek, E.J.R.2    Hwanjo, Y.3    Guo, J.4    McLennan, G.5    Hoffman, E.A.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.