-
2
-
-
27144459059
-
Quantum information with continuous variables
-
S. L. Braunstein and P. van Loock, " Quantum information with continuous variables.," Rev. Mod. Phys. 77, 513-577 (2005).
-
(2005)
Rev. Mod. Phys.
, vol.77
, pp. 513-577
-
-
Braunstein, S.L.1
Van Loock, P.2
-
4
-
-
33947385649
-
Can quantum-mechanical description of physical reality be considered complete?
-
A. Einstein, B. Podolsky, and N. Rosen, " Can quantum-mechanical description of physical reality be considered complete?," Phys. Rev. 47, 777-780 (1935).
-
(1935)
Phys. Rev.
, vol.47
, pp. 777-780
-
-
Einstein, A.1
Podolsky, B.2
Rosen, N.3
-
5
-
-
1542516146
-
On the role of entanglement in quantum-computational speed-up
-
R. Jozsa and N. Linden, " On the role of entanglement in quantum-computational speed-up.," Proc. R. Soc. London, Ser. A 459, 2011-2032 (2003).
-
(2003)
Proc. R. Soc. London, Ser. A
, vol.459
, pp. 2011-2032
-
-
Jozsa, R.1
Linden, N.2
-
6
-
-
0346008178
-
Superposition, entanglement and quantum computation
-
T. M. Forcer, A. J. G. Hey, D. A. Ross, and P. G. R. Smith, " Superposition, entanglement and quantum computation.," Quantum Inf. Comput. 2, 97-116 (2002).
-
(2002)
Quantum Inf. Comput.
, vol.2
, pp. 97-116
-
-
Forcer, T.M.1
Hey, A.J.G.2
Ross, D.A.3
Smith, P.G.R.4
-
7
-
-
21844495197
-
Mach-Zehnder interferometer as an instructional tool
-
P. Nachman, " Mach-Zehnder interferometer as an instructional tool.," Am. J. Phys. 63, 39-43 (1995).
-
(1995)
Am. J. Phys.
, vol.63
, pp. 39-43
-
-
Nachman, P.1
-
9
-
-
33244466960
-
Generation of bright two-color continuous variable entanglement
-
A. S. Villar, L. S. Cruz, K. N. Cassemiro, M. Martinelli, and P. Nussenzveig, " Generation of bright two-color continuous variable entanglement.," Phys. Rev. Lett. 95, 243603-1-4 (2005).
-
(2005)
Phys. Rev. Lett.
, vol.95
-
-
Villar, A.S.1
Cruz, L.S.2
Cassemiro, K.N.3
Martinelli, M.4
Nussenzveig, P.5
-
10
-
-
0035583299
-
An introduction to Pound-Drever-Hall laser frequency stabilization
-
E. D. Black, " An introduction to Pound-Drever-Hall laser frequency stabilization.," Am. J. Phys. 69, 79-87 (2001).
-
(2001)
Am. J. Phys.
, vol.69
, pp. 79-87
-
-
Black, E.D.1
-
11
-
-
0020764924
-
Laser phase and frequency stabilization using an optical resonator
-
R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, and G. M. Ford, " Laser phase and frequency stabilization using an optical resonator.," Appl. Phys. B 31, 97-105 (1983).
-
(1983)
Appl. Phys. B
, vol.31
, pp. 97-105
-
-
Drever, R.W.P.1
Hall, J.L.2
Kowalski, F.V.3
Hough, J.4
Ford, G.M.5
-
12
-
-
0001173510
-
Generation and detection of squeezed states of light by nondegenerate four-wave mixing in an optical fiber
-
M. D. Levenson, R. M. Shelby, A. Aspect, M. Reid, and D. F. Walls, " Generation and detection of squeezed states of light by nondegenerate four-wave mixing in an optical fiber.," Phys. Rev. A 32, 1550-1562 (1985).
-
(1985)
Phys. Rev. A
, vol.32
, pp. 1550-1562
-
-
Levenson, M.D.1
Shelby, R.M.2
Aspect, A.3
Reid, M.4
Walls, D.F.5
-
13
-
-
0026202520
-
System control by variation of the squeezing phase
-
P. Galatola, L. A. Lugiato, M. G. Porreca, P. Tombesi, and G. Leuchs, " System control by variation of the squeezing phase.," Opt. Commun. 85, 95-103 (1991).
-
(1991)
Opt. Commun.
, vol.85
, pp. 95-103
-
-
Galatola, P.1
Lugiato, L.A.2
Porreca, M.G.3
Tombesi, P.4
Leuchs, G.5
-
15
-
-
0000407239
-
A squeezed-state primer
-
R. W. Henry and S. C. Glotzer, " A squeezed-state primer.," Am. J. Phys. 56, 318-328 (1988).
-
(1988)
Am. J. Phys.
, vol.56
, pp. 318-328
-
-
Henry, R.W.1
Glotzer, S.C.2
-
16
-
-
0001279973
-
Correlations and squeezing of two-mode oscillations
-
A. K. Ekert and P. L. Knight, " Correlations and squeezing of two-mode oscillations.," Am. J. Phys. 57, 692-697 (1989).
-
(1989)
Am. J. Phys.
, vol.57
, pp. 692-697
-
-
Ekert, A.K.1
Knight, P.L.2
-
17
-
-
0034421783
-
The mystery of the quantum cakes
-
P. G. Kwiat and L. Hardy, " The mystery of the quantum cakes.," Am. J. Phys. 68, 33-36 (2001).
-
(2001)
Am. J. Phys.
, vol.68
, pp. 33-36
-
-
Kwiat, P.G.1
Hardy, L.2
-
18
-
-
0003904245
-
Quantum noise in optical systems: A semiclassical approach
-
in, edited by J. Dalibard, J. M. Raimond, and J. Zinn-Justin (Elsevier, New York)
-
C. Fabre and S. Reynaud, " Quantum noise in optical systems: A semiclassical approach.," in Les Houches Session LIII, edited by, J. Dalibard, J. M. Raimond, and, J. Zinn-Justin, (Elsevier, New York, 1992), pp. 675-711.
-
(1992)
Les Houches Session LIII
, pp. 675-711
-
-
Fabre, C.1
Reynaud, S.2
-
19
-
-
56749168715
-
-
This concept fails for very weak fields, because a phase operator is a difficult object to define rigorously (see Ref.).
-
This concept fails for very weak fields, because a phase operator is a difficult object to define rigorously (see Ref.).
-
-
-
-
20
-
-
33750000743
-
Oscillations in photon distribution of squeezed states and interference in phase space
-
W. Schleich and J. A. Wheeler, " Oscillations in photon distribution of squeezed states and interference in phase space.," Nature (London) 326, 574-577 (1987).
-
(1987)
Nature (London)
, vol.326
, pp. 574-577
-
-
Schleich, W.1
Wheeler, J.A.2
-
21
-
-
56749132844
-
-
Note that L corresponds to twice the distance between the mirrors in the specific case of a linear cavity (Fig.). This notation is employed to easily allow for any cavity geometry.
-
Note that L corresponds to twice the distance between the mirrors in the specific case of a linear cavity (Fig.). This notation is employed to easily allow for any cavity geometry.
-
-
-
-
24
-
-
0020844262
-
Frequency modulation (FM) spectroscopy
-
G. C. Bjorklund, M. D. Levenson, W. Lenth, and C. Ortiz, " Frequency modulation (FM) spectroscopy.," Appl. Phys. B 32, 145-152 (1983).
-
(1983)
Appl. Phys. B
, vol.32
, pp. 145-152
-
-
Bjorklund, G.C.1
Levenson, M.D.2
Lenth, W.3
Ortiz, C.4
-
25
-
-
56749181835
-
-
The definition of the noise power involves the variance of the fluctuations (the ellipse). It has been tacitly assumed that the field state possesses a Gaussian Wigner function (the fluctuations satisfy Gaussian statistics), because it is the common situation found in the laboratory. Higher order moments necessary to reconstruct the state in the more general case are in principle accessible from the direct measurement of the fluctuations, as shown by Eq., given that the linearization procedure of Eq. applies. The statistics of any quadrature direction in phase space can be completely transferred (disregarding losses) to the reflected amplitude statistics.
-
The definition of the noise power involves the variance of the fluctuations (the ellipse). It has been tacitly assumed that the field state possesses a Gaussian Wigner function (the fluctuations satisfy Gaussian statistics), because it is the common situation found in the laboratory. Higher order moments necessary to reconstruct the state in the more general case are in principle accessible from the direct measurement of the fluctuations, as shown by Eq., given that the linearization procedure of Eq. applies. The statistics of any quadrature direction in phase space can be completely transferred (disregarding losses) to the reflected amplitude statistics.
-
-
-
-
26
-
-
0034356414
-
Quantum self-homodyne tomography with an empty cavity
-
J. Zhang, T. Zhang, K. Zhang, C. Xie, and K. Peng, " Quantum self-homodyne tomography with an empty cavity.," J. Opt. Soc. Am. B 17, 1920-1925 (2000).
-
(2000)
J. Opt. Soc. Am. B
, vol.17
, pp. 1920-1925
-
-
Zhang, J.1
Zhang, T.2
Zhang, K.3
Xie, C.4
Peng, K.5
-
27
-
-
17144470347
-
Quantum-state reconstruction of a squeezed laser field by self-homodyne tomography
-
A. Zavatta, F. Marin, and G. Giacomelli, " Quantum-state reconstruction of a squeezed laser field by self-homodyne tomography.," Phys. Rev. A 66, 043805-1-8 (2002).
-
(2002)
Phys. Rev. A
, vol.66
-
-
Zavatta, A.1
Marin, F.2
Giacomelli, G.3
|