메뉴 건너뛰기




Volumn 24, Issue 23, 2008, Pages 2748-2754

Stochastic dynamics of genetic networks: Modelling and parameter identification

Author keywords

[No Author keywords available]

Indexed keywords

ARTICLE; COMPUTER ANALYSIS; COMPUTER SIMULATION; GENE EXPRESSION; GENE IDENTIFICATION; GENE REGULATORY NETWORK; GENETIC ALGORITHM; GENETIC ANALYSIS; INFORMATION PROCESSING; MOLECULAR DYNAMICS; NONHUMAN; PRIORITY JOURNAL; PROBABILITY; PROKARYOTE; PROTEIN BINDING; PROTEIN DEGRADATION; PROTEIN SYNTHESIS; STOCHASTIC MODEL; STRESS;

EID: 56649100782     PISSN: 13674803     EISSN: 14602059     Source Type: Journal    
DOI: 10.1093/bioinformatics/btn527     Document Type: Article
Times cited : (21)

References (28)
  • 1
    • 17144456808 scopus 로고    scopus 로고
    • Positive feedback in eukaryotic gene networks: Cell differentiation by graded to binary response conversion
    • Becskei,A. et al. (2001) Positive feedback in eukaryotic gene networks: Cell differentiation by graded to binary response conversion. EMBO J., 20, 2528-2535.
    • (2001) EMBO J , vol.20 , pp. 2528-2535
    • Becskei, A.1
  • 2
    • 33645027986 scopus 로고    scopus 로고
    • Stochastic protein expression in individual cells at the single molecule level
    • Cai,L. et al. (2006) Stochastic protein expression in individual cells at the single molecule level. Nature, 440, 358-362.
    • (2006) Nature , vol.440 , pp. 358-362
    • Cai, L.1
  • 3
    • 39849106163 scopus 로고    scopus 로고
    • Subtilin production by Bacillus subtilis: Stochastic hybrid models and parameter identification
    • Cinquemani,E. et al. (2008) Subtilin production by Bacillus subtilis: Stochastic hybrid models and parameter identification. IEEE Trans. Automat. Contr., Special Issue on Systems Biology, 53 38-50.
    • (2008) IEEE Trans. Automat. Contr., Special Issue on Systems Biology , vol.53 , pp. 38-50
    • Cinquemani, E.1
  • 4
    • 0036207347 scopus 로고    scopus 로고
    • Modeling and simulation of genetic regulatory systems: A literature review
    • de Jong,H. (2002) Modeling and simulation of genetic regulatory systems: a literature review. J. Comput. Biol., 9, 69-105.
    • (2002) J. Comput. Biol , vol.9 , pp. 69-105
    • de Jong, H.1
  • 5
    • 0037119587 scopus 로고    scopus 로고
    • Stochastic gene expression in a single cell
    • Elowitz,M.B. et al. (2002) Stochastic gene expression in a single cell. Science, 297, 1183-1186.
    • (2002) Science , vol.297 , pp. 1183-1186
    • Elowitz, M.B.1
  • 6
    • 28944434119 scopus 로고    scopus 로고
    • Real-time kinetics of gene activity in individual bacteria
    • Golding,I. et al. (2005) Real-time kinetics of gene activity in individual bacteria. Cell, 123, 1025-1036.
    • (2005) Cell , vol.123 , pp. 1025-1036
    • Golding, I.1
  • 7
    • 27744503232 scopus 로고    scopus 로고
    • Bayesian inference for stochastic kinetic models using a diffusion approximation
    • Golightly,A. and Wilkinson,D. (2005) Bayesian inference for stochastic kinetic models using a diffusion approximation. Biometrics, 61 781-788.
    • (2005) Biometrics , vol.61 , pp. 781-788
    • Golightly, A.1    Wilkinson, D.2
  • 8
    • 27644447823 scopus 로고    scopus 로고
    • Stochastic models for chemically reacting systems using polynomial stochastic hybrid systems
    • Hespanha,J. and Singh,A. (2005) Stochastic models for chemically reacting systems using polynomial stochastic hybrid systems. Int. J. Robust Nonlinear Contr., 15, 669-689.
    • (2005) Int. J. Robust Nonlinear Contr , vol.15 , pp. 669-689
    • Hespanha, J.1    Singh, A.2
  • 10
    • 0028968021 scopus 로고
    • Model genetic circuits encoding autoregulatory transcription factors
    • Keller,A.D. (1995) Model genetic circuits encoding autoregulatory transcription factors. J. Theor. Biol., 172, 169-185.
    • (1995) J. Theor. Biol , vol.172 , pp. 169-185
    • Keller, A.D.1
  • 11
    • 0026075591 scopus 로고
    • A stochastic model for gene induction
    • Ko,M.S.H. (1991) A stochastic model for gene induction. J. Theor. Biol., 153, 181-194.
    • (1991) J. Theor. Biol , vol.153 , pp. 181-194
    • Ko, M.S.H.1
  • 12
    • 0038027881 scopus 로고    scopus 로고
    • Molecular interaction maps as information organizers and simulation guides
    • Kohn,K. (2001) Molecular interaction maps as information organizers and simulation guides. Chaos, 11, 84-97.
    • (2001) Chaos , vol.11 , pp. 84-97
    • Kohn, K.1
  • 13
    • 56649113540 scopus 로고    scopus 로고
    • Kouretas,P. et al. (2006) Stochastic hybrid modelling of biochemical processes. Ch.g. In Cassandras,C. and Lygeros,J. (eds). Stochastic Hybrid Systems, 24 of Automation and Control Engineering Series. CRC Press, Boca Raton, FL, USA.
    • Kouretas,P. et al. (2006) Stochastic hybrid modelling of biochemical processes. Ch.g. In Cassandras,C. and Lygeros,J. (eds). Stochastic Hybrid Systems, vol. 24 of Automation and Control Engineering Series. CRC Press, Boca Raton, FL, USA.
  • 14
    • 45249124485 scopus 로고    scopus 로고
    • Parameter identification for stochastic hybrid systems using randomized optimization: A case study on subtilin production by Bacillus subtilis. Nonlinear Anal
    • Koutroumpas,K. et al. (2008) Parameter identification for stochastic hybrid systems using randomized optimization: A case study on subtilin production by Bacillus subtilis. Nonlinear Anal. Hybrid Syst., 2, 786-802.
    • (2008) Hybrid Syst , vol.2 , pp. 786-802
    • Koutroumpas, K.1
  • 16
    • 33846097600 scopus 로고    scopus 로고
    • Dynamics of single-cell gene expression
    • Article
    • Longo,D. and Hasty,J. (2006) Dynamics of single-cell gene expression. Mol. Syst. Biol., 2, Article No. 64.
    • (2006) Mol. Syst. Biol , Issue.64 , pp. 2
    • Longo, D.1    Hasty, J.2
  • 17
    • 0033083733 scopus 로고    scopus 로고
    • It's a noisy business! genetic regulation at the nanomolar scale
    • McAdams,H.H. and Arkin,A. (2002) It's a noisy business! genetic regulation at the nanomolar scale. Trends Genet., 15, 65-69.
    • (2002) Trends Genet , vol.15 , pp. 65-69
    • McAdams, H.H.1    Arkin, A.2
  • 18
    • 0242574982 scopus 로고    scopus 로고
    • Parameter estimation in biochemical pathways: A comparison of global optimization methods
    • Moles,C. et al. (2003) Parameter estimation in biochemical pathways: A comparison of global optimization methods. Genome Res. 13, 2467-2474.
    • (2003) Genome Res , vol.13 , pp. 2467-2474
    • Moles, C.1
  • 19
    • 0036578645 scopus 로고    scopus 로고
    • Regulation of noise in the expression of a single gene
    • Ozbudak,E.M. et al. (2002) Regulation of noise in the expression of a single gene. Nat. Genet., 31, 69-73.
    • (2002) Nat. Genet , vol.31 , pp. 69-73
    • Ozbudak, E.M.1
  • 20
    • 20344389483 scopus 로고    scopus 로고
    • Models of stochastic gene expression
    • Paulsson,J. (2005) Models of stochastic gene expression. Phys. Life Rev., 2, 157-175.
    • (2005) Phys. Life Rev , vol.2 , pp. 157-175
    • Paulsson, J.1
  • 21
    • 33746582040 scopus 로고    scopus 로고
    • Reinker,S. et al. (2006) Parameter estimation in stochastic biochemical reactions. IET Syst. Biol., 153, 168-178.
    • Reinker,S. et al. (2006) Parameter estimation in stochastic biochemical reactions. IET Syst. Biol., 153, 168-178.
  • 22
    • 33646377419 scopus 로고    scopus 로고
    • Qualitative simulation of the carbon starvation response in Escherichia coli
    • Ropers,D. et al. (2006) Qualitative simulation of the carbon starvation response in Escherichia coli. Biosystems, 84, 124-152.
    • (2006) Biosystems , vol.84 , pp. 124-152
    • Ropers, D.1
  • 23
    • 27644480701 scopus 로고    scopus 로고
    • Stochastic modeling of gene regulatory networks
    • Samad,H.E. et al. (2005) Stochastic modeling of gene regulatory networks. Int. J. Robust Nonlinear Contr., 15, 691-711.
    • (2005) Int. J. Robust Nonlinear Contr , vol.15 , pp. 691-711
    • Samad, H.E.1
  • 24
    • 33845875759 scopus 로고    scopus 로고
    • Simulated maximum likelihood method for estimating kinetic rates in gene expression
    • Tian,T. et al. (2007) Simulated maximum likelihood method for estimating kinetic rates in gene expression. Bioinformatics, 23 84-91.
    • (2007) Bioinformatics , vol.23 , pp. 84-91
    • Tian, T.1
  • 26
    • 0029155607 scopus 로고
    • Enhancers increase the probability but not the level of gene expression
    • Walters,M.C. et al. (1995) Enhancers increase the probability but not the level of gene expression. Proc. Natl Acad. Sci. USA., 92, 7125-7129.
    • (1995) Proc. Natl Acad. Sci. USA , vol.92 , pp. 7125-7129
    • Walters, M.C.1
  • 27
    • 35748966726 scopus 로고    scopus 로고
    • An analytical rate expression for the kinetics of gene transcription mediated by dimeric transcription factors
    • Yang,H. et al. (2007) An analytical rate expression for the kinetics of gene transcription mediated by dimeric transcription factors. J. Biochem., 142, 135-144.
    • (2007) J. Biochem , vol.142 , pp. 135-144
    • Yang, H.1
  • 28
    • 44949139699 scopus 로고    scopus 로고
    • Zeiser,S. et al. (2008) Simulation of genetic networks modelled by piecewise deterministic Markov processes. IET Syst. Biol., 2 113-135.
    • Zeiser,S. et al. (2008) Simulation of genetic networks modelled by piecewise deterministic Markov processes. IET Syst. Biol., 2 113-135.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.