메뉴 건너뛰기




Volumn 71, Issue 16-18, 2008, Pages 3631-3634

A new action potential classifier using 3-Gaussian model fitting

Author keywords

3 Gaussian model; Action potential classification; Spike sorting

Indexed keywords

ELECTROPHYSIOLOGY; TRELLIS CODES;

EID: 56549103103     PISSN: 09252312     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.neucom.2008.04.002     Document Type: Conference Paper
Times cited : (10)

References (16)
  • 1
    • 0017485225 scopus 로고
    • Multispike train analysis
    • M. Abeles, and M.H. Goldstein Multispike train analysis Proc. IEEE 65 5 1977 752 773
    • (1977) Proc. IEEE , vol.65 , Issue.5 , pp. 752-773
    • Abeles, M.1    Goldstein, M.H.2
  • 2
    • 0026884847 scopus 로고
    • Recognition of multiunit neural signals
    • A.F. Atiya Recognition of multiunit neural signals IEEE Trans. Biomed. Eng. 39 1992 723 729
    • (1992) IEEE Trans. Biomed. Eng. , vol.39 , pp. 723-729
    • Atiya, A.F.1
  • 3
    • 0027722930 scopus 로고
    • Optimal detection, classification, and superposition resolution in neural waveform recordings
    • I.N. Bankman, K.O. Johnshon, and W. Schneider Optimal detection, classification, and superposition resolution in neural waveform recordings IEEE Trans. Biomed. Eng. 40 3 1993 836 841
    • (1993) IEEE Trans. Biomed. Eng. , vol.40 , Issue.3 , pp. 836-841
    • Bankman, I.N.1    Johnshon, K.O.2    Schneider, W.3
  • 4
    • 0030893232 scopus 로고    scopus 로고
    • Detection, classification, and superposition resolution of action potentials in multiunit single-channel recordings by an on-line real-time neural network
    • R. Chandra, and L.M. Optican Detection, classification, and superposition resolution of action potentials in multiunit single-channel recordings by an on-line real-time neural network IEEE Trans. Biomed. Eng. 44 5 1997 403 412
    • (1997) IEEE Trans. Biomed. Eng. , vol.44 , Issue.5 , pp. 403-412
    • Chandra, R.1    Optican, L.M.2
  • 6
    • 0018654779 scopus 로고
    • Spike recognition and on-line classification by unsupervised learning system
    • E.H. D'Hollander, and G.A. Orban Spike recognition and on-line classification by unsupervised learning system IEEE Trans. Biomed. Eng. 26 5 1979 279 284
    • (1979) IEEE Trans. Biomed. Eng. , vol.26 , Issue.5 , pp. 279-284
    • D'Hollander, E.H.1    Orban, G.A.2
  • 7
    • 0029307534 scopus 로고
    • De-noising by soft-thresholding
    • D. Donoho De-noising by soft-thresholding IEEE Trans. Inform. Theory 41 1995 613 627
    • (1995) IEEE Trans. Inform. Theory , vol.41 , pp. 613-627
    • Donoho, D.1
  • 10
    • 0018097480 scopus 로고
    • Criteria for multiunit spike separation techniques
    • W.J. Heetderks Criteria for multiunit spike separation techniques Biological Cybern. 29 1978 215 220
    • (1978) Biological Cybern. , vol.29 , pp. 215-220
    • Heetderks, W.J.1
  • 11
    • 0025596922 scopus 로고
    • The reconstruction of individual spike trains from extracellular multineuron recordings using a neural network emulation program
    • R.F. Jensen The reconstruction of individual spike trains from extracellular multineuron recordings using a neural network emulation program J. Neurosci. Meth. 35 1990 203 213
    • (1990) J. Neurosci. Meth. , vol.35 , pp. 203-213
    • Jensen, R.F.1
  • 12
    • 0024424016 scopus 로고
    • A low-cost single board solution for real-time unsupervised waveform classification of multineuron recordings
    • A.K. Kreiter, Ad.M.H.J. Aertsen, and G.L. Gerstein A low-cost single board solution for real-time unsupervised waveform classification of multineuron recordings J. Neurosci. Meth. 30 1989 59 69
    • (1989) J. Neurosci. Meth. , vol.30 , pp. 59-69
    • Kreiter, A.K.1    Aertsen, A..M.H.J.2    Gerstein, G.L.3
  • 13
    • 0000873069 scopus 로고
    • A method for the solution of certain problems in least squares
    • K. Levenberg A method for the solution of certain problems in least squares Q. Appl. Math. 5 1944 164 168
    • (1944) Q. Appl. Math. , vol.5 , pp. 164-168
    • Levenberg, K.1
  • 14
    • 0000960284 scopus 로고
    • Bayesian modeling and classification of neural signals
    • M.S. Lewicki Bayesian modeling and classification of neural signals Neural Comput. 6 1994 1005 1030
    • (1994) Neural Comput. , vol.6 , pp. 1005-1030
    • Lewicki, M.S.1
  • 15
    • 0000169232 scopus 로고
    • An algorithm for least squares estimation of nonlinear parameters
    • D. Marquardt An algorithm for least squares estimation of nonlinear parameters SIAM J. Appl. Math. 11 1963 431 441
    • (1963) SIAM J. Appl. Math. , vol.11 , pp. 431-441
    • Marquardt, D.1
  • 16
    • 0037207286 scopus 로고    scopus 로고
    • Using noise signature to optimize spike-sorting and to assess neuronal classification quality
    • C. Pouzat, O. Mazor, and G. Laurent Using noise signature to optimize spike-sorting and to assess neuronal classification quality J. Neurosci. Meth. 122 2002 43 57
    • (2002) J. Neurosci. Meth. , vol.122 , pp. 43-57
    • Pouzat, C.1    Mazor, O.2    Laurent, G.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.