-
1
-
-
26244461684
-
Clustering with bregman divergences
-
Banerjee, A., Merugu, S., Dhillon, I. S., & Ghosh, J. (2005). Clustering with bregman divergences. Journal of Machine Learning Research, 6, 1705-1749.
-
(2005)
Journal of Machine Learning Research
, vol.6
, pp. 1705-1749
-
-
Banerjee, A.1
Merugu, S.2
Dhillon, I.S.3
Ghosh, J.4
-
2
-
-
33749245798
-
Convex neural networks
-
Bengio, Y., Roux, N. L., Vincent, P., Delalleau, O., & Marcotte, P. (2005). Convex neural networks. NIPS.
-
(2005)
NIPS
-
-
Bengio, Y.1
Roux, N.L.2
Vincent, P.3
Delalleau, O.4
Marcotte, P.5
-
7
-
-
0029357425
-
Mean shift, mode seeking, and clustering
-
Cheng, Y. (1995). Mean shift, mode seeking, and clustering. IEEE Trans. Pattern Analysis and Machine Intelligence, 17, 790-799.
-
(1995)
IEEE Trans. Pattern Analysis and Machine Intelligence
, vol.17
, pp. 790-799
-
-
Cheng, Y.1
-
8
-
-
0036565814
-
Mean shift: A robust approach toward feature space analysis
-
Comaniciu, D., & Meer, P. (2002). Mean shift: A robust approach toward feature space analysis. IEEE Trans. Pattern Anal. Mach. Intell, 24, 603-619.
-
(2002)
IEEE Trans. Pattern Anal. Mach. Intell
, vol.24
, pp. 603-619
-
-
Comaniciu, D.1
Meer, P.2
-
10
-
-
0016421071
-
The estimation of the gradient of a density function, with applications in pattern recognition
-
Fukunaga, K., & Hostetler, L. D. (1975). The estimation of the gradient of a density function, with applications in pattern recognition. IEEE Trans. Information Theory, 21, 32-40.
-
(1975)
IEEE Trans. Information Theory
, vol.21
, pp. 32-40
-
-
Fukunaga, K.1
Hostetler, L.D.2
-
12
-
-
70349089401
-
Convex clustering with exemplar-based models
-
Lashkari, D., & Golland, P. (2007). Convex clustering with exemplar-based models. NIPS.
-
(2007)
NIPS
-
-
Lashkari, D.1
Golland, P.2
-
14
-
-
85156234551
-
Boosting density estimation
-
MIT Press
-
Rosset, S., & Segal, E. (2002). Boosting density estimation. NIPS (pp. 641-648). MIT Press.
-
(2002)
NIPS
, pp. 641-648
-
-
Rosset, S.1
Segal, E.2
-
15
-
-
34250732316
-
A statistical approach to rule learning
-
Rückert, U., & Kramer, S. (2006). A statistical approach to rule learning. ICML (pp. 785-792).
-
(2006)
ICML
, pp. 785-792
-
-
Rückert, U.1
Kramer, S.2
-
16
-
-
0032594954
-
Input Space versus Feature Space in Kernel-Based Methods
-
Schölkopf, B., Mika, S., Burges, C. J. C., Knirsch, P., Mueller, K.-R., Raetsch, G., & Smola, A. J. (1999). Input Space versus Feature Space in Kernel-Based Methods. IEEE-NN, 10, 1000.
-
(1999)
IEEE-NN
, pp. 1000
-
-
Schölkopf, B.1
Mika, S.2
Burges, C.J.C.3
Knirsch, P.4
Mueller, K.-R.5
Raetsch, G.6
Smola, A.J.7
-
18
-
-
34247329358
-
Fast global kernel density mode seeking: Applications to localization and tracking
-
Shen, C., Brooks, M. J., & van den Hengel, A. (2007). Fast global kernel density mode seeking: Applications to localization and tracking. IEEE Transactions on Image Processing, 16, 1457-1469.
-
(2007)
IEEE Transactions on Image Processing
, vol.16
, pp. 1457-1469
-
-
Shen, C.1
Brooks, M.J.2
van den Hengel, A.3
-
19
-
-
2542544743
-
A kernel approach for vector quantization with guaranteed distortion bounds
-
Tipping, M., & Schölkopf, B. (2001). A kernel approach for vector quantization with guaranteed distortion bounds. AISTATS.
-
(2001)
AISTATS
-
-
Tipping, M.1
Schölkopf, B.2
-
20
-
-
29144523061
-
On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming
-
Wächter, A., & Biegler, L. T. (2006). On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming, 106, 25-57.
-
(2006)
Mathematical Programming
, vol.106
, pp. 25-57
-
-
Wächter, A.1
Biegler, L.T.2
|