-
1
-
-
84924581223
-
-
Cambridge University Press, Cambridge, England
-
S. Sachdev, Quantum Phase Transitions (Cambridge University Press, Cambridge, England, 1999).
-
(1999)
Quantum Phase Transitions
-
-
Sachdev, S.1
-
2
-
-
0031482045
-
-
10.1103/RevModPhys.69.315
-
S. L. Sondhi, S. M. Girvin, J. P. Carini, and D. Shahar, Rev. Mod. Phys. 10.1103/RevModPhys.69.315 69, 315 (1997).
-
(1997)
Rev. Mod. Phys.
, vol.69
, pp. 315
-
-
Sondhi, S.L.1
Girvin, S.M.2
Carini, J.P.3
Shahar, D.4
-
5
-
-
34548040368
-
-
10.1103/PhysRevB.14.1165
-
J. A. Hertz, Phys. Rev. B 10.1103/PhysRevB.14.1165 14, 1165 (1976).
-
(1976)
Phys. Rev. B
, vol.14
, pp. 1165
-
-
Hertz, J.A.1
-
6
-
-
0000181496
-
-
10.1103/PhysRevB.48.7183
-
A. J. Millis, Phys. Rev. B 10.1103/PhysRevB.48.7183 48, 7183 (1993).
-
(1993)
Phys. Rev. B
, vol.48
, pp. 7183
-
-
Millis, A.J.1
-
8
-
-
33244476999
-
-
10.1103/PhysRevLett.95.267001
-
A. G. Green and S. L. Sondhi, Phys. Rev. Lett. 10.1103/PhysRevLett.95. 267001 95, 267001 (2005).
-
(2005)
Phys. Rev. Lett.
, vol.95
, pp. 267001
-
-
Green, A.G.1
Sondhi, S.L.2
-
9
-
-
33845213056
-
-
10.1103/PhysRevLett.97.227003
-
A. G. Green, J. E. Moore, S. L. Sondhi, and A. Vishwanath, Phys. Rev. Lett. 10.1103/PhysRevLett.97.227003 97, 227003 (2006).
-
(2006)
Phys. Rev. Lett.
, vol.97
, pp. 227003
-
-
Green, A.G.1
Moore, J.E.2
Sondhi, S.L.3
Vishwanath, A.4
-
10
-
-
0542377954
-
-
10.1103/PhysRevB.56.8714
-
K. Damle and S. Sachdev, Phys. Rev. B 10.1103/PhysRevB.56.8714 56, 8714 (1997).
-
(1997)
Phys. Rev. B
, vol.56
, pp. 8714
-
-
Damle, K.1
Sachdev, S.2
-
11
-
-
0001224174
-
-
10.1103/PhysRevB.44.6883
-
M.-C. Cha, M. P. A. Fisher, S. M. Girvin, M. Wallin, and A. P. Young, Phys. Rev. B 10.1103/PhysRevB.44.6883 44, 6883 (1991).
-
(1991)
Phys. Rev. B
, vol.44
, pp. 6883
-
-
Cha, M.-C.1
Fisher, M.P.A.2
Girvin, S.M.3
Wallin, M.4
Young, A.P.5
-
12
-
-
28844501250
-
-
Nonlinear response near to quantum criticality has also been discussed by 10.1103/PhysRevLett.95.247201
-
Nonlinear response near to quantum criticality has also been discussed by J. Fenton and A. J. Schofield, Phys. Rev. Lett. 10.1103/PhysRevLett.95.247201 95, 247201 (2005), although in their case, the system remains in thermal equilibrium.
-
(2005)
Phys. Rev. Lett.
, vol.95
, pp. 247201
-
-
Fenton, J.1
Schofield, A.J.2
-
13
-
-
27144508727
-
-
10.1103/PhysRevLett.95.137601
-
T. Oka and H. Aoki, Phys. Rev. Lett. 10.1103/PhysRevLett.95.137601 95, 137601 (2005).
-
(2005)
Phys. Rev. Lett.
, vol.95
, pp. 137601
-
-
Oka, T.1
Aoki, H.2
-
14
-
-
33845369174
-
-
10.1103/PhysRevLett.97.236808
-
A. Mitra, S. Takei, Y. B. Kim, and A. J. Millis, Phys. Rev. Lett. 10.1103/PhysRevLett.97.236808 97, 236808 (2006).
-
(2006)
Phys. Rev. Lett.
, vol.97
, pp. 236808
-
-
Mitra, A.1
Takei, S.2
Kim, Y.B.3
Millis, A.J.4
-
15
-
-
56349162810
-
-
In a previous work considered by one of us (Ref.), the situation was rather simpler since the thermal conductivity of the model system considered was formally infinite and therefore there was no limit to the rate at which Joule heat could be transported.
-
In a previous work considered by one of us (Ref.), the situation was rather simpler since the thermal conductivity of the model system considered was formally infinite and therefore there was no limit to the rate at which Joule heat could be transported.
-
-
-
-
16
-
-
56349096587
-
-
The relation that the present work bears to Ref. is rather similar to the relation that Ref. bears to Ref..
-
The relation that the present work bears to Ref. is rather similar to the relation that Ref. bears to Ref..
-
-
-
-
18
-
-
0008469029
-
-
The heat sink is strictly necessary to permit the formation of a steady state. It will not appear explicitly in our analysis, which will be essentially linear response for the electrons. The actual answer will turn out to be nonlinear in the electric field because of the field dependence of the paramagnon-electron-scattering rate. For an interesting discussion of the role of the heat sink in conductivity measurements see 10.1103/PhysRevA.19.1721
-
The heat sink is strictly necessary to permit the formation of a steady state. It will not appear explicitly in our analysis, which will be essentially linear response for the electrons. The actual answer will turn out to be nonlinear in the electric field because of the field dependence of the paramagnon-electron-scattering rate. For an interesting discussion of the role of the heat sink in conductivity measurements see A.-M. Tremblay, B. Patton, P. C. Martin, and P. F. Maldague, Phys. Rev. A 10.1103/PhysRevA.19.1721 19, 1721 (1979).
-
(1979)
Phys. Rev. a
, vol.19
, pp. 1721
-
-
Tremblay, A.-M.1
Patton, B.2
Martin, P.C.3
Maldague, P.F.4
-
19
-
-
0004101795
-
-
Course of Theoretical Physics Vol. Butterworth-Heinemann, Oxford
-
E. M. Lifshitz and L. P. Pitaevskii, Physical Kinetics, Course of Theoretical Physics Vol. 10 (Butterworth-Heinemann, Oxford, 1981), Sec. 82.
-
(1981)
Physical Kinetics
, vol.10
-
-
Lifshitz, E.M.1
Pitaevskii, L.P.2
-
21
-
-
56349150648
-
-
In order to estimate the transport length at 1 K, we have used the Drude formula σ=n e2 τ/m and n= kF3 / (3 π2) to obtain ltr = (ℏσ/ e2) (3 π2 / n2) 1/3. The temperature dependence of the transport length is given by Eq. 17. The Fermi energy of Sr3 Ru2 O7 is εF / kB = (ℏ2 /2 kB m) (3 π2 n) 2/3 ∼7× 103 K.
-
In order to estimate the transport length at 1 K, we have used the Drude formula σ=n e2 τ/m and n= kF3 / (3 π2) to obtain ltr = (ℏσ/ e2) (3 π2 / n2) 1/3. The temperature dependence of the transport length is given by Eq. 17. The Fermi energy of Sr3 Ru2 O7 is εF / kB = (ℏ2 /2 kB m) (3 π2 n) 2/3 ∼7× 103 K.
-
-
-
-
23
-
-
0032621523
-
-
10.1103/PhysRevLett.82.4280
-
A. Rosch, Phys. Rev. Lett. 10.1103/PhysRevLett.82.4280 82, 4280 (1999).
-
(1999)
Phys. Rev. Lett.
, vol.82
, pp. 4280
-
-
Rosch, A.1
|