-
1
-
-
7444220645
-
-
10.1126/science.1102896
-
K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science 306, 666 (2004). 10.1126/science.1102896
-
(2004)
Science
, vol.306
, pp. 666
-
-
Novoselov, K.S.1
Geim, A.K.2
Morozov, S.V.3
Jiang, D.4
Zhang, Y.5
Dubonos, S.V.6
Grigorieva, I.V.7
Firsov, A.A.8
-
3
-
-
33845628173
-
-
10.1016/S1369-7021(06)71788-6
-
M. I. Katsnelson, Mater. Today 10, 20 (2007). 10.1016/S1369-7021(06) 71788-6
-
(2007)
Mater. Today
, vol.10
, pp. 20
-
-
Katsnelson, M.I.1
-
4
-
-
46749150363
-
-
10.1038/nnano.2008.149
-
L. Tapasztó, G. Dobrik, Ph. Lambin, and L. P. Biró, Nat. Nanotechnol. 3, 397 (2008). 10.1038/nnano.2008.149
-
(2008)
Nat. Nanotechnol.
, vol.3
, pp. 397
-
-
Tapasztó, L.1
Dobrik, G.2
Lambin, Ph.3
Biró, L.P.4
-
5
-
-
27744475163
-
-
10.1038/nature04235
-
Y. Zhang, Y. W. Tan, H. L. Stormer, and Ph. Kim, Nature (London) 438, 201 (2005). 10.1038/nature04235
-
(2005)
Nature (London)
, vol.438
, pp. 201
-
-
Zhang, Y.1
Tan, Y.W.2
Stormer, H.L.3
Kim, Ph.4
-
9
-
-
34548672547
-
-
10.1126/science.1144359
-
F. Miao, S. Wijeratne, Y. Zhang, U. C. Coskun, W. Bao, and C. N. Lau, Science 317, 1530 (2007). 10.1126/science.1144359
-
(2007)
Science
, vol.317
, pp. 1530
-
-
Miao, F.1
Wijeratne, S.2
Zhang, Y.3
Coskun, U.C.4
Bao, W.5
Lau, C.N.6
-
10
-
-
0030492538
-
-
10.1143/JPSJ.65.1920
-
M. Fujita, K. Wakabayashi, K. Nakada, and K. Kusakabe, J. Phys. Soc. Jpn. 65, 1920 (1996). 10.1143/JPSJ.65.1920
-
(1996)
J. Phys. Soc. Jpn.
, vol.65
, pp. 1920
-
-
Fujita, M.1
Wakabayashi, K.2
Nakada, K.3
Kusakabe, K.4
-
11
-
-
33947266413
-
-
10.1143/JPSJ.76.033702
-
K. I. Sasaki, J. Jiang, R. Saito, S. Onari, and Y. Tanaka, J. Phys. Soc. Jpn. 76, 033702 (2007). 10.1143/JPSJ.76.033702
-
(2007)
J. Phys. Soc. Jpn.
, vol.76
, pp. 033702
-
-
Sasaki, K.I.1
Jiang, J.2
Saito, R.3
Onari, S.4
Tanaka, Y.5
-
13
-
-
0036637835
-
-
10.1016/S0038-1098(02)00186-2
-
T. Tanaka, A. Tajima, R. Mariizumi, M. Hosoda, R. Ohno, E. Rokuda, C. Oshima, and S. Otani, Solid State Commun. 123, 33 (2002). 10.1016/S0038-1098(02) 00186-2
-
(2002)
Solid State Commun.
, vol.123
, pp. 33
-
-
Tanaka, T.1
Tajima, A.2
Mariizumi, R.3
Hosoda, M.4
Ohno, R.5
Rokuda, E.6
Oshima, C.7
Otani, S.8
-
15
-
-
33644817086
-
-
10.1103/PhysRevB.42.9458
-
D. W. Brenner, Phys. Rev. B 42, 9458 (1990). 10.1103/PhysRevB.42.9458
-
(1990)
Phys. Rev. B
, vol.42
, pp. 9458
-
-
Brenner, D.W.1
-
18
-
-
0037017208
-
-
10.1088/0953-8984/14/4/312
-
D. W. Brenner, O. A. Shenderova, J. A. Harrison, S. J. Stuart, B. Nii, and S. B. Sinnott, J. Phys.: Condens. Matter 14, 783 (2002). 10.1088/0953-8984/14/4/312
-
(2002)
J. Phys.: Condens. Matter
, vol.14
, pp. 783
-
-
Brenner, D.W.1
Shenderova, O.A.2
Harrison, J.A.3
Stuart, S.J.4
Nii, B.5
Sinnott, S.B.6
-
20
-
-
0006838610
-
-
10.1002/(SICI)1097-461X(1997)65:5<453::AID-QUA9>3.0.CO;2-V
-
D. Sanchez-Portal, P. Ordejon, E. Artacho, and J. M. Soler, Int. J. Quantum Chem. 65, 453 (1997). 10.1002/(SICI)1097-461X(1997)65:5<453::AID- QUA9>3.0.CO;2-V
-
(1997)
Int. J. Quantum Chem.
, vol.65
, pp. 453
-
-
Sanchez-Portal, D.1
Ordejon, P.2
Artacho, E.3
Soler, J.M.4
-
21
-
-
26144450583
-
-
10.1103/PhysRevB.23.5048
-
J. P. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981). 10.1103/PhysRevB.23.5048
-
(1981)
Phys. Rev. B
, vol.23
, pp. 5048
-
-
Perdew, J.P.1
Zunger, A.2
-
23
-
-
0033197383
-
-
10.1002/(SICI)1521-3951(199909)215:1<809::AID-PSSB809>3.0.CO;2-0
-
E. Artacho, D. Sanchez-Portal, P. Ordejon, A. Garcia, and J. M. Soler, Phys. Status Solidi B 215, 809 (1999). 10.1002/(SICI)1521-3951(199909)215: 1<809::AID-PSSB809>3.0.CO;2-0
-
(1999)
Phys. Status Solidi B
, vol.215
, pp. 809
-
-
Artacho, E.1
Sanchez-Portal, D.2
Ordejon, P.3
Garcia, A.4
Soler, J.M.5
-
26
-
-
7044231295
-
-
10.1088/0953-8984/16/41/018
-
P. Hermet, J.-L. Bantignies, A. Rahmani, J.-L. Sauvajol, and M. R. Johnson, J. Phys.: Condens. Matter 16, 7385 (2004). 10.1088/0953-8984/16/41/018
-
(2004)
J. Phys.: Condens. Matter
, vol.16
, pp. 7385
-
-
Hermet, P.1
Bantignies, J.-L.2
Rahmani, A.3
Sauvajol, J.-L.4
Johnson, M.R.5
-
27
-
-
2942729805
-
-
It has been shown that LDA and generalized gradient approximation (GGA) give similar results for phonon computation of graphite. In particular phonon frequencies have been calculated to be lower by 2% in GGA than in LDA [10.1016/j.ssc.2004.04.042
-
It has been shown that LDA and generalized gradient approximation (GGA) give similar results for phonon computation of graphite. In particular phonon frequencies have been calculated to be lower by 2% in GGA than in LDA [L. Wirtz and A. Rubio, Solid State Commun. 131, 141 (2004)]. 10.1016/j.ssc.2004.04.042
-
(2004)
Solid State Commun.
, vol.131
, pp. 141
-
-
Wirtz, L.1
Rubio, A.2
-
28
-
-
0000726819
-
-
10.1103/PhysRevLett.56.632
-
J. Tersoff, Phys. Rev. Lett. 56, 632 (1986). 10.1103/PhysRevLett.56.632
-
(1986)
Phys. Rev. Lett.
, vol.56
, pp. 632
-
-
Tersoff, J.1
-
29
-
-
4243420264
-
-
10.1103/PhysRevLett.61.2879
-
J. Tersoff, Phys. Rev. Lett. 61, 2879 (1988). 10.1103/PhysRevLett.61.2879
-
(1988)
Phys. Rev. Lett.
, vol.61
, pp. 2879
-
-
Tersoff, J.1
-
32
-
-
33746645280
-
-
10.1021/jp0574504
-
K. Sbai, A. Rahmani, H. Chadli, J.-L. Bantignies, P. Hermet, and J.-L. Sauvajol, J. Phys. Chem. B 110, 12388 (2006). 10.1021/jp0574504
-
(2006)
J. Phys. Chem. B
, vol.110
, pp. 12388
-
-
Sbai, K.1
Rahmani, A.2
Chadli, H.3
Bantignies, J.-L.4
Hermet, P.5
Sauvajol, J.-L.6
-
33
-
-
33750879848
-
-
10.1103/PhysRevB.74.205412
-
H. Chadli, A. Rahmani, K. Sbai, P. Hermet, S. Rols, and J.-L. Sauvajol, Phys. Rev. B 74, 205412 (2006). 10.1103/PhysRevB.74.205412
-
(2006)
Phys. Rev. B
, vol.74
, pp. 205412
-
-
Chadli, H.1
Rahmani, A.2
Sbai, K.3
Hermet, P.4
Rols, S.5
Sauvajol, J.-L.6
-
36
-
-
0029732275
-
-
Q. Ding, Q. Jiang, Z. Jin, and D. Tian, Fullerene Sci. Technol. 4, 31 (1996).
-
(1996)
Fullerene Sci. Technol.
, vol.4
, pp. 31
-
-
Ding, Q.1
Jiang, Q.2
Jin, Z.3
Tian, D.4
-
37
-
-
33845292575
-
-
This comparison method has already been used with defects in carbon nanotubes. 10.1016/j.carbon.2006.09.018
-
This comparison method has already been used with defects in carbon nanotubes. M. Vandescuren, H. Amara, R. Langlet, and Ph. Lambin, Carbon 45, 349 (2007). 10.1016/j.carbon.2006.09.018
-
(2007)
Carbon
, vol.45
, pp. 349
-
-
Vandescuren, M.1
Amara, H.2
Langlet, R.3
Lambin, Ph.4
-
38
-
-
56349112786
-
-
The recursion method is useful as a global method providing an overall view on phonon modes and allowing comparisons of the intensities of the peaks in VDOS spectra. However, when very precise characterizations are needed, the diagonalization method is the only alternative.
-
The recursion method is useful as a global method providing an overall view on phonon modes and allowing comparisons of the intensities of the peaks in VDOS spectra. However, when very precise characterizations are needed, the diagonalization method is the only alternative.
-
-
-
-
39
-
-
56349102189
-
-
The width of the ribbon is calculated without the C-H bond. Namely, it is the distance between the outmost carbons in the relaxed structure.
-
The width of the ribbon is calculated without the C-H bond. Namely, it is the distance between the outmost carbons in the relaxed structure.
-
-
-
|