메뉴 건너뛰기




Volumn 9, Issue , 2008, Pages 2079-2111

Value function approximation using multiple aggregation for multiattribute resource management

Author keywords

Adaptive learning; Approximate dynamic programming; Hierarchical statistics; Mixture models; Multiattribute resources

Indexed keywords

AGGLOMERATION; DYNAMIC PROGRAMMING; INFORMATION MANAGEMENT; MANAGEMENT; POLYNOMIAL APPROXIMATION; REINFORCEMENT LEARNING; RESOURCE ALLOCATION; SYSTEMS ENGINEERING;

EID: 56349109509     PISSN: 15324435     EISSN: 15337928     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (44)

References (34)
  • 1
    • 56349138935 scopus 로고
    • Intelligent optimal control
    • Technical report, Laboratory for Information and Decision Systems, Massachusetts Institute of Technology, Cambridge, MA
    • M. Athans, D. Bertsekas, W. McDermott, J. Tsitsiklis, and B. Van Roy. Intelligent optimal control. Technical report, Laboratory for Information and Decision Systems, Massachusetts Institute of Technology, Cambridge, MA, 1995.
    • (1995)
    • Athans, M.1    Bertsekas, D.2    McDermott, W.3    Tsitsiklis, J.4    Van Roy, B.5
  • 3
    • 0024680419 scopus 로고
    • Adaptive aggregation methods for infinite horizon dynamic programming
    • D. Bertsekas and D. Castanon. Adaptive aggregation methods for infinite horizon dynamic programming. IEEE Transactions on Automatic Control, 34(6):589-598, 1989.
    • (1989) IEEE Transactions on Automatic Control , vol.34 , Issue.6 , pp. 589-598
    • Bertsekas, D.1    Castanon, D.2
  • 5
    • 0346942368 scopus 로고    scopus 로고
    • Decision-theoretic planning: Structural assumptions and computational leverage
    • C. Boutilier, T. Dean, and S. Hanks. Decision-theoretic planning: structural assumptions and computational leverage. J. of Artificial Intelligence, 11:1-94, 1999.
    • (1999) J. of Artificial Intelligence , vol.11 , pp. 1-94
    • Boutilier, C.1    Dean, T.2    Hanks, S.3
  • 6
    • 0034248853 scopus 로고    scopus 로고
    • Stochastic dynamic programming with factored representations
    • URL
    • C. Boutilier, R. Dearden, and M. Goldszmidt. Stochastic dynamic programming with factored representations. Artificial Intelligence, 121(1-2):49-107, 2000. URL citeseer.ist.psu.edu/boutilier99stochastic.html.
    • (2000) Artificial Intelligence , vol.121 , Issue.1-2 , pp. 49-107
    • Boutilier, C.1    Dearden, R.2    Goldszmidt, M.3
  • 7
    • 0030196364 scopus 로고    scopus 로고
    • Stacked regression
    • L. Breiman. Stacked regression. Machine Learning, 24:49-64, 1996.
    • (1996) Machine Learning , vol.24 , pp. 49-64
    • Breiman, L.1
  • 9
    • 56349143640 scopus 로고    scopus 로고
    • Z. Feng, E. A. Hansen, and S. Zilberstein. Symbolic generalization for on-line planning. In Christopher Meek and Uffe Kjærulff, editors, UAI, pages 209-216. Morgan Kaufmann, 2003. ISBN 0-127-05664-5.
    • Z. Feng, E. A. Hansen, and S. Zilberstein. Symbolic generalization for on-line planning. In Christopher Meek and Uffe Kjærulff, editors, UAI, pages 209-216. Morgan Kaufmann, 2003. ISBN 0-127-05664-5.
  • 10
    • 0009007510 scopus 로고    scopus 로고
    • Dynamic vehicle routing and dispatching
    • T.G. Crainic and G. Laporte, editors, Kluwer Academic Publishers
    • M. Gendreau and J. Y. Potvin. Dynamic vehicle routing and dispatching. In T.G. Crainic and G. Laporte, editors, Fleet Management and Logistics, pages 115-126. Kluwer Academic Publishers, 1998.
    • (1998) Fleet Management and Logistics , pp. 115-126
    • Gendreau, M.1    Potvin, J.Y.2
  • 13
    • 33646755888 scopus 로고    scopus 로고
    • Exploiting knowledge about future demands for real-time vehicle dispatching
    • S. Ichoua, M. Gendreau, and J.-Y. Potvin. Exploiting knowledge about future demands for real-time vehicle dispatching. Transportation Science, 40(2):211-225, 2005.
    • (2005) Transportation Science , vol.40 , Issue.2 , pp. 211-225
    • Ichoua, S.1    Gendreau, M.2    Potvin, J.-Y.3
  • 14
    • 0038178323 scopus 로고    scopus 로고
    • Solving factored MDP's using non-homogeneous partitions
    • K.E. Kim and T. Dean. Solving factored MDP's using non-homogeneous partitions. Artificial Intelligence, 147(1-2):225-251, 2003.
    • (2003) Artificial Intelligence , vol.147 , Issue.1-2 , pp. 225-251
    • Kim, K.E.1    Dean, T.2
  • 17
    • 0019912540 scopus 로고
    • An iterative aggregation procedure for Markov decision processes
    • R. Mendelssohn. An iterative aggregation procedure for Markov decision processes. Operations Research, 30(1):62-73, 1982.
    • (1982) Operations Research , vol.30 , Issue.1 , pp. 62-73
    • Mendelssohn, R.1
  • 19
    • 0032071535 scopus 로고    scopus 로고
    • Dynamic control of logistics queueing networks for large-scale fleet management
    • W. B. Powell and T. A. Carvalho. Dynamic control of logistics queueing networks for large-scale fleet management. Transportation Science, 32(2):90-109, 1998.
    • (1998) Transportation Science , vol.32 , Issue.2 , pp. 90-109
    • Powell, W.B.1    Carvalho, T.A.2
  • 20
    • 0036567426 scopus 로고    scopus 로고
    • An adaptive dynamic programming algorithm for the heterogeneous resource allocation problem
    • W. B. Powell, J. A. Shapiro, and H. P. Simão. An adaptive dynamic programming algorithm for the heterogeneous resource allocation problem. Transportation Science, 36(2):231-249, 2002.
    • (2002) Transportation Science , vol.36 , Issue.2 , pp. 231-249
    • Powell, W.B.1    Shapiro, J.A.2    Simão, H.P.3
  • 21
    • 0000606094 scopus 로고
    • Aggregation and disaggregation techniques and methodology in optimization
    • D. Rogers, R. Plante, R. Wong, and J. Evans. Aggregation and disaggregation techniques and methodology in optimization. Operations Research, 39(4):553-582, 1991.
    • (1991) Operations Research , vol.39 , Issue.4 , pp. 553-582
    • Rogers, D.1    Plante, R.2    Wong, R.3    Evans, J.4
  • 22
    • 0034086424 scopus 로고    scopus 로고
    • Comparing neuro-dynamic programming algorithms for the vehicle routing problem with stochastic demands
    • N. Secomandi. Comparing neuro-dynamic programming algorithms for the vehicle routing problem with stochastic demands. Computers and Operations Research, 27(11): 1201-1225, 2000.
    • (2000) Computers and Operations Research , vol.27 , Issue.11 , pp. 1201-1225
    • Secomandi, N.1
  • 23
    • 0035463693 scopus 로고    scopus 로고
    • A rollout policy for the vehicle routing problem with stochastic demands
    • N. Secomandi. A rollout policy for the vehicle routing problem with stochastic demands. Operations Research, 49(5):796-802, 2001.
    • (2001) Operations Research , vol.49 , Issue.5 , pp. 796-802
    • Secomandi, N.1
  • 24
    • 56349138481 scopus 로고    scopus 로고
    • An approximate dynamic programming algorithm for large-scale fleet management: A case application
    • to appear
    • H. P. Simao, J. Day, A. P. George, T. Gifford, J. Nienow, and W. B. Powell. An approximate dynamic programming algorithm for large-scale fleet management: A case application. Transportation Science, (to appear), 2008.
    • (2008) Transportation Science
    • Simao, H.P.1    Day, J.2    George, A.P.3    Gifford, T.4    Nienow, J.5    Powell, W.B.6
  • 25
    • 10644263219 scopus 로고    scopus 로고
    • The dynamic assignment problem
    • M. Spivey and W. B. Powell. The dynamic assignment problem. Transportation Science, 38(4): 399-419, 2004.
    • (2004) Transportation Science , vol.38 , Issue.4 , pp. 399-419
    • Spivey, M.1    Powell, W.B.2
  • 26
    • 33847202724 scopus 로고
    • Learning to predict by the methods of temporal differences
    • R.S. Sutton. Learning to predict by the methods of temporal differences. Machine Learning, 3: 9-44, 1988.
    • (1988) Machine Learning , vol.3 , pp. 9-44
    • Sutton, R.S.1
  • 28
    • 0029752470 scopus 로고    scopus 로고
    • Feature-based methods for large scale dynamic programming
    • J. N. Tsitsiklis and B. Van Roy. Feature-based methods for large scale dynamic programming. Machine Learning, 22:59-94, 1996.
    • (1996) Machine Learning , vol.22 , pp. 59-94
    • Tsitsiklis, J.N.1    Van Roy, B.2
  • 31
    • 0017997986 scopus 로고
    • Approximations of dynamic programs I
    • W. Whitt. Approximations of dynamic programs I. Mathematics of Operations Research, 3:231-243, 1978.
    • (1978) Mathematics of Operations Research , vol.3 , pp. 231-243
    • Whitt, W.1
  • 32
    • 0026692226 scopus 로고
    • Stacked generalization
    • D. Wolpert. Stacked generalization. Neural Networks, 5:241-259, 1992.
    • (1992) Neural Networks , vol.5 , pp. 241-259
    • Wolpert, D.1
  • 34
    • 0032347075 scopus 로고    scopus 로고
    • Near optimization of dynamic systems by decomposition and aggregation
    • Q. Zhang and S. P. Sethi. Near optimization of dynamic systems by decomposition and aggregation. Journal of Optimization Theory and Applications, 99(1):1-22, 1998.
    • (1998) Journal of Optimization Theory and Applications , vol.99 , Issue.1 , pp. 1-22
    • Zhang, Q.1    Sethi, S.P.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.