-
1
-
-
33750156640
-
-
10.1038/138840a0
-
L. Landau, Nature (London) 10.1038/138840a0 138, 840 (1936).
-
(1936)
Nature (London)
, vol.138
, pp. 840
-
-
Landau, L.1
-
4
-
-
0021651229
-
-
G. M. Gushchin, A. A. Kuranov, F. N. Berseneva, and B. P. Adrianovskiy, Phys. Met. Metallogr. 58, 155 (1984).
-
(1984)
Phys. Met. Metallogr.
, vol.58
, pp. 155
-
-
Gushchin, G.M.1
Kuranov, A.A.2
Berseneva, F.N.3
Adrianovskiy, B.P.4
-
5
-
-
0038638995
-
-
B. A. Greenberg, N. A. Kruglikov, L. A. Rodionova, A. Y. Volkov, L. G. Grokhovskaya, G. M. Gushchin, and I. N. Sakhanskaya, Platinum Met. Rev. 47, 46 (2003).
-
(2003)
Platinum Met. Rev.
, vol.47
, pp. 46
-
-
Greenberg, B.A.1
Kruglikov, N.A.2
Rodionova, L.A.3
Volkov, A.Y.4
Grokhovskaya, L.G.5
Gushchin, G.M.6
Sakhanskaya, I.N.7
-
6
-
-
10444271005
-
-
10.1016/j.msea.2004.01.128
-
D.-S. Xu, J.-P. Chang, J. Li, R. Yang, D. Li, and S. Yip, Mater. Sci. Eng., A 387-389, 840 (2004). 10.1016/j.msea.2004.01.128
-
(2004)
Mater. Sci. Eng., a
, vol.387-389
, pp. 840
-
-
Xu, D.-S.1
Chang, J.-P.2
Li, J.3
Yang, R.4
Li, D.5
Yip, S.6
-
7
-
-
0037278758
-
-
10.1007/s11661-003-0203-0
-
H. Sehitoglu, R. Hamilton, D. Canadinc, X. Y. Zhang, K. Gall, I. Karaman, Y. Chumlyakov, and H. J. Maier, Metall. Mater. Trans. A 10.1007/s11661-003- 0203-0 34, 5 (2003).
-
(2003)
Metall. Mater. Trans. a
, vol.34
, pp. 5
-
-
Sehitoglu, H.1
Hamilton, R.2
Canadinc, D.3
Zhang, X.Y.4
Gall, K.5
Karaman, I.6
Chumlyakov, Y.7
Maier, H.J.8
-
9
-
-
56349097219
-
-
edited by J. Wiezorek, C. L. Fu, M. Takeyama, D. Morris, and H. Clemens, MRS Symposia Proceedings No. 980 (Materials Research Society, Warrendale, PA
-
T. Inamura, R. Tachi, K. Wakashima, and H. Hosoda, in Advanced intermetallic-based alloys, edited by, J. Wiezorek,,, C. L. Fu,,, M. Takeyama,,, D. Morris,, and, H. Clemens,, MRS Symposia Proceedings No. 980 (Materials Research Society, Warrendale, PA, 2007), 0980-ll04-12.
-
(2007)
Advanced Intermetallic-based Alloys
-
-
Inamura, T.1
Tachi, R.2
Wakashima, K.3
Hosoda, H.4
-
10
-
-
0035385148
-
-
10.1080/01418610108216633
-
R. D. Field, D. J. Thoma, P. S. Dunn, D. W. Brown, and C. M. Cady, Philos. Mag. A 10.1080/01418610108216633 81, 1691 (2001).
-
(2001)
Philos. Mag. a
, vol.81
, pp. 1691
-
-
Field, R.D.1
Thoma, D.J.2
Dunn, P.S.3
Brown, D.W.4
Cady, C.M.5
-
11
-
-
0032014533
-
-
10.1007/s11661-998-0267-y
-
K. Gall, H. Sehitoglu, H. J. Maier, and K. Jacobus, Metall. Mater. Trans. A 29, 765 (1998). 10.1007/s11661-998-0267-y
-
(1998)
Metall. Mater. Trans. a
, vol.29
, pp. 765
-
-
Gall, K.1
Sehitoglu, H.2
Maier, H.J.3
Jacobus, K.4
-
13
-
-
0000601732
-
-
10.1103/PhysRevB.52.6327
-
A. E. Jacobs, Phys. Rev. B 10.1103/PhysRevB.52.6327 52, 6327 (1995).
-
(1995)
Phys. Rev. B
, vol.52
, pp. 6327
-
-
Jacobs, A.E.1
-
14
-
-
26544474042
-
-
10.1103/PhysRevB.52.803
-
S. Kartha, J. A. Krumhansl, J. P. Sethna, and L. K. Wickham, Phys. Rev. B 10.1103/PhysRevB.52.803 52, 803 (1995).
-
(1995)
Phys. Rev. B
, vol.52
, pp. 803
-
-
Kartha, S.1
Krumhansl, J.A.2
Sethna, J.P.3
Wickham, L.K.4
-
15
-
-
0001640788
-
-
10.1103/PhysRevB.60.R12537
-
S. R. Shenoy, T. Lookman, A. Saxena, and A. R. Bishop, Phys. Rev. B 10.1103/PhysRevB.60.R12537 60, R12537 (1999).
-
(1999)
Phys. Rev. B
, vol.60
, pp. 12537
-
-
Shenoy, S.R.1
Lookman, T.2
Saxena, A.3
Bishop, A.R.4
-
16
-
-
3543069175
-
-
10.1103/PhysRevB.67.024114
-
T. Lookman, S. R. Shenoy, K. Ø. Rasmussen, A. Saxena, and A. R. Bishop, Phys. Rev. B 10.1103/PhysRevB.67.024114 67, 024114 (2003).
-
(2003)
Phys. Rev. B
, vol.67
, pp. 024114
-
-
Lookman, T.1
Shenoy, S.R.2
Rasmussen K Ø3
Saxena, A.4
Bishop, A.R.5
-
18
-
-
0001551582
-
-
10.1103/PhysRevB.56.5807
-
I. Groma, Phys. Rev. B 10.1103/PhysRevB.56.5807 56, 5807 (1997).
-
(1997)
Phys. Rev. B
, vol.56
, pp. 5807
-
-
Groma, I.1
-
19
-
-
0033359161
-
-
10.1016/S1359-6454(99)00215-3
-
I. Groma and P. Balogh, Acta Mater. 10.1016/S1359-6454(99)00215-3 47, 3647 (1999).
-
(1999)
Acta Mater.
, vol.47
, pp. 3647
-
-
Groma, I.1
Balogh, P.2
-
20
-
-
0000510068
-
-
10.1103/PhysRevB.60.122
-
B. Bakó and I. Groma, Phys. Rev. B 10.1103/PhysRevB.60.122 60, 122 (1999).
-
(1999)
Phys. Rev. B
, vol.60
, pp. 122
-
-
Bakó, B.1
Groma, I.2
-
23
-
-
36149012981
-
-
10.1103/PhysRev.80.436
-
M. Peach and J. S. Koehler, Phys. Rev. 10.1103/PhysRev.80.436 80, 436 (1950).
-
(1950)
Phys. Rev.
, vol.80
, pp. 436
-
-
Peach, M.1
Koehler, J.S.2
-
25
-
-
16244412729
-
-
10.1103/PhysRevB.61.11956
-
A. El-Azab, Phys. Rev. B 10.1103/PhysRevB.61.11956 61, 11956 (2000).
-
(2000)
Phys. Rev. B
, vol.61
, pp. 11956
-
-
El-Azab, A.1
-
28
-
-
33646451958
-
-
10.1080/00018730600583514
-
M. Zaiser, Adv. Phys. 10.1080/00018730600583514 55, 185 (2006).
-
(2006)
Adv. Phys.
, vol.55
, pp. 185
-
-
Zaiser, M.1
-
31
-
-
33847158341
-
-
10.1080/14786430600972921
-
R. Sedláček, C. Schwarz, J. Kratochvíl, and E. Werner, Philos. Mag. 10.1080/14786430600972921 87, 1225 (2007).
-
(2007)
Philos. Mag.
, vol.87
, pp. 1225
-
-
Sedláček, R.1
Schwarz, C.2
Kratochvíl, J.3
Werner, E.4
-
35
-
-
0032593160
-
-
10.1016/S0079-6425(99)00004-3
-
F. C. Lovey and V. Torra, Prog. Mater. Sci. 10.1016/S0079-6425(99)00004-3 44, 189 (1999).
-
(1999)
Prog. Mater. Sci.
, vol.44
, pp. 189
-
-
Lovey, F.C.1
Torra, V.2
-
36
-
-
0023089452
-
-
10.1016/0001-6160(87)90218-5
-
D. Ríos-Jara and G. Guénin, Acta Metall. 10.1016/0001-6160(87)90218-5 35, 109 (1987).
-
(1987)
Acta Metall.
, vol.35
, pp. 109
-
-
Ríos-Jara, D.1
Guénin, G.2
-
38
-
-
1542619690
-
-
10.1038/nature02378
-
K. Bhattacharya, S. Conti, G. Zanzotto, and J. Zimmer, Nature (London) 10.1038/nature02378 428, 55 (2004).
-
(2004)
Nature (London)
, vol.428
, pp. 55
-
-
Bhattacharya, K.1
Conti, S.2
Zanzotto, G.3
Zimmer, J.4
-
42
-
-
0035854076
-
-
10.1016/S1359-6454(01)00075-1
-
Y. U. Wang, Y. M. Jin, A. M. Cuitiño, and A. G. Khachaturyan, Acta Mater. 10.1016/S1359-6454(01)00075-1 49, 1847 (2001).
-
(2001)
Acta Mater.
, vol.49
, pp. 1847
-
-
Wang, Y.U.1
Jin, Y.M.2
Cuitiño, A.M.3
Khachaturyan, A.G.4
-
43
-
-
23044526433
-
-
10.1070/PU2001v044n02ABEH000760
-
G. A. Malygin, Phys. Usp. 10.1070/PU2001v044n02ABEH000760 44, 173 (2001).
-
(2001)
Phys. Usp.
, vol.44
, pp. 173
-
-
Malygin, G.A.1
-
44
-
-
0024720003
-
-
10.1016/0036-9748(89)90057-4
-
A. N. Gulluoglu, D. J. Srolovitz, R. LeSar, and P. S. Lomdahl, Scr. Metall. 10.1016/0036-9748(89)90057-4 23, 1347 (1989).
-
(1989)
Scr. Metall.
, vol.23
, pp. 1347
-
-
Gulluoglu, A.N.1
Srolovitz, D.J.2
Lesar, R.3
Lomdahl, P.S.4
-
46
-
-
0037095388
-
-
10.1103/PhysRevB.65.205408
-
D. Halley, Y. Samson, A. Marty, P. Bayle-Guillemaud, C. Beigné, B. Gilles, and J. E. Mazille, Phys. Rev. B 10.1103/PhysRevB.65.205408 65, 205408 (2002).
-
(2002)
Phys. Rev. B
, vol.65
, pp. 205408
-
-
Halley, D.1
Samson, Y.2
Marty, A.3
Bayle-Guillemaud, P.4
Beigné, C.5
Gilles, B.6
Mazille, J.E.7
-
48
-
-
56349101569
-
-
The term "net dislocation" is used here in a loose sense and should not be thought of as a crystal dislocation. The reason is that the net Burgers vector is a vector sum of the Burgers vectors of individual crystallographic dislocations. Therefore, it can assume in general any orientation and magnitude.
-
The term "net dislocation" is used here in a loose sense and should not be thought of as a crystal dislocation. The reason is that the net Burgers vector is a vector sum of the Burgers vectors of individual crystallographic dislocations. Therefore, it can assume in general any orientation and magnitude.
-
-
-
-
49
-
-
56349164690
-
-
In the following, we will show that both elastic and plastic parts of the distortion tensor contain signatures of individual dislocations. To simplify the notation, we avoid the superscript e that often labels the elastic part of the distortion tensor.
-
In the following, we will show that both elastic and plastic parts of the distortion tensor contain signatures of individual dislocations. To simplify the notation, we avoid the superscript e that often labels the elastic part of the distortion tensor.
-
-
-
-
50
-
-
56349169373
-
-
Tensorial representations of divergence, curl, and incompatibility are given in Appendix.
-
Tensorial representations of divergence, curl, and incompatibility are given in Appendix.
-
-
-
-
51
-
-
56349103603
-
-
The Saint-Venant law is satisfied for all irrotational strain fields, such as, for example, those due to point defects.
-
The Saint-Venant law is satisfied for all irrotational strain fields, such as, for example, those due to point defects.
-
-
-
-
52
-
-
56349154448
-
-
There seem to be two equivalent definitions of this tensor in the literature. In the original Kröner's formulation, α=-×β and the incompatibility of strains is then defined as η= ×ε×. Here, we adopt the convention of El-Azab (Ref.), whereby α=×β. This allows us to write the incompatibility constraint in a more intuitive way as η=××ε.
-
There seem to be two equivalent definitions of this tensor in the literature. In the original Kröner's formulation, α=-×β and the incompatibility of strains is then defined as η= ×ε×. Here, we adopt the convention of El-Azab (Ref.), whereby α=×β. This allows us to write the incompatibility constraint in a more intuitive way as η=××ε.
-
-
-
-
53
-
-
50449140340
-
-
10.1016/0001-6160(53)90054-6
-
J. F. Nye, Acta Metall. 10.1016/0001-6160(53)90054-6 1, 153 (1953).
-
(1953)
Acta Metall.
, vol.1
, pp. 153
-
-
Nye, J.F.1
-
55
-
-
56349151321
-
-
A similar approach is valid also in higher dimensions, where typically more than one primary order parameter is needed to identify the phase transition.
-
A similar approach is valid also in higher dimensions, where typically more than one primary order parameter is needed to identify the phase transition.
-
-
-
-
56
-
-
56349171674
-
-
In the isotropic case, C11 - C12 =2 C44 and, therefore, only two elastic constants are independent. Hence, only two of the three coefficients A1, A2, and A3 in the free energy are independent since A2 = A3 /2.
-
In the isotropic case, C11 - C12 =2 C44 and, therefore, only two elastic constants are independent. Hence, only two of the three coefficients A1, A2, and A3 in the free energy are independent since A2 = A3 /2.
-
-
-
-
57
-
-
39249085721
-
-
10.1103/PhysRevLett.87.055704
-
K. Ø. Rasmussen, T. Lookman, A. Saxena, A. R. Bishop, R. C. Albers, and S. R. Shenoy, Phys. Rev. Lett. 10.1103/PhysRevLett.87.055704 87, 055704 (2001).
-
(2001)
Phys. Rev. Lett.
, vol.87
, pp. 055704
-
-
Rasmussen K Ø1
Lookman, T.2
Saxena, A.3
Bishop, A.R.4
Albers, R.C.5
Shenoy, S.R.6
-
58
-
-
56349107377
-
-
If we consider periodic boundary conditions, the integration by parts transfers the derivatives of the variations of e1 and e3 to the derivatives of λ; e.g., λ 2 δ e1 becomes (2 λ) δ e1, etc.
-
If we consider periodic boundary conditions, the integration by parts transfers the derivatives of the variations of e1 and e3 to the derivatives of λ; e.g., λ 2 δ e1 becomes (2 λ) δ e1, etc.
-
-
-
-
59
-
-
56349153567
-
-
If the incompatibility field η33 vanishes, i.e., the medium is dislocation-free, and no external stress is applied, only the first term in Eq. 18 remains. In this case, one obtains (Ref.) that e1 and e3 can be expressed as functionals of the primary order parameter e2 only.
-
If the incompatibility field η33 vanishes, i.e., the medium is dislocation-free, and no external stress is applied, only the first term in Eq. 18 remains. In this case, one obtains (Ref.) that e1 and e3 can be expressed as functionals of the primary order parameter e2 only.
-
-
-
-
60
-
-
56349098735
-
-
It is always possible to augment this deterministic relaxational dynamics by a stochastic term that is often characterized (Ref.) as white noise with zero mean and variance 2Γ kB T. However, it can be shown that this noise plays an important role only at the temperatures slightly below Tc, where thermal fluctuations may overcome the energy barrier between the two variants of the martensite and, therefore, cause switching between these variants. In this case, the twin boundary between individual martensite variants would not be sharp but rather diffuse. At low temperatures, i.e., well below Tc, this barrier is large and the weak thermal fluctuations cannot cause this switching. Similarly, above Tc, the free energy has one minimum corresponding to e2 =0 and the thermal fluctuations would merely cause broadening of the distribution of e2. The goal of this paper is to give a proof of the principle and, for simplicity, the effect of thermal noise is not included.
-
It is always possible to augment this deterministic relaxational dynamics by a stochastic term that is often characterized (Ref.) as white noise with zero mean and variance 2Γ kB T. However, it can be shown that this noise plays an important role only at the temperatures slightly below Tc, where thermal fluctuations may overcome the energy barrier between the two variants of the martensite and, therefore, cause switching between these variants. In this case, the twin boundary between individual martensite variants would not be sharp but rather diffuse. At low temperatures, i.e., well below Tc, this barrier is large and the weak thermal fluctuations cannot cause this switching. Similarly, above Tc, the free energy has one minimum corresponding to e2 =0 and the thermal fluctuations would merely cause broadening of the distribution of e2. The goal of this paper is to give a proof of the principle and, for simplicity, the effect of thermal noise is not included.
-
-
-
-
62
-
-
35148897887
-
-
10.1038/nature06139
-
B. B. van Aken, J. P. Rivera, H. Schmid, and M. Fiebig, Nature (London) 10.1038/nature06139 449, 702 (2007).
-
(2007)
Nature (London)
, vol.449
, pp. 702
-
-
Van Aken, B.B.1
Rivera, J.P.2
Schmid, H.3
Fiebig, M.4
|